
 

The Moss Growth Optimization (MGO):  1 

Concepts and performance 2 

Boli Zheng
1
, Yi Chen

1
,
 
Chaofan Wang

1
, Ali Asghar Heidari

2
, Lei Liu

3
 and 3 

Huiling Chen
1, *

 4 

 5 

1 
Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, 6 

Wenzhou University, Wenzhou 325035, China 7 

2
 School of Surveying and Geospatial Engineering, College of Engineering, University of 8 

Tehran, Tehran, Iran 9 

3 
College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China 10 

∗ Corresponding author. chenhuiling.jlu@gmail.com 11 

Abstract 12 

The moss growth optimization (MGO), introduced in this paper, is an algorithm inspired by 13 

the moss growth in the natural environment. The MGO algorithm initially determines the 14 

evolutionary direction of the population through a mechanism called the determination of 15 

wind direction, which employs a method of partitioning the population. Meanwhile, drawing 16 

inspiration from the asexual reproduction, sexual reproduction, and vegetative reproduction 17 

of moss, two novel search strategies, namely spore dispersal search and dual propagation 18 

search, are proposed for exploration and exploitation, respectively. Finally, the cryptobiosis 19 

mechanism alters the traditional metaheuristic algorithm's approach of directly modifying 20 

individuals' solutions, preventing the algorithm from getting trapped in local optima. In 21 

experiments, a thorough investigation is undertaken on the characteristics, parameters, and 22 

time cost of the MGO algorithm to enhance the understanding of MGO. Subsequently, MGO 23 

is compared with ten original and advanced CEC 2017 and CEC 2022 algorithms to verify its 24 

performance advantages. Lastly, this paper applies MGO to four real-world engineering 25 

problems to validate its effectiveness and superiority in practical scenarios. The results 26 

demonstrate that MGO is a promising algorithm for tackling real challenges. The source 27 

codes of the MGO are available at https://aliasgharheidari.com/MGO.html and other websites.  28 

https://aliasgharheidari.com/MGO.html
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1. Introduction 3 

Proposing new metaphor-based algorithms merely is not a proper direction (Villalón et al., 4 

2020), while designing efficient optimization models can be a step forward in addressing the 5 

complexity of new feature spaces. In essence, it is not about novelty but rather the accuracy, 6 

performance, and adaptability of tools developed and at which level it can decode the 7 

complexities of the new data terrain. Some of these methods may not be an original model, 8 

but they employed a new metaphor and a comparable structure and procedures to formerly 9 

existing approaches. In addition, the use of metaphor is not an advantage, while if there is any 10 

metaphor that helps understand underlying mechanisms, it is not a drawback. This study tries 11 

its best to introduce an effective optimization tool, emphasizing its model performance and 12 

computational features. The proposed method utilizes a metaphor to describe the process 13 

more clearly but is not supposed to be its advantage; we utilized many benchmark functions 14 

to provide insight into the potential and drawbacks of its performance and results. 15 

Optimization methods have been a widespread topic in dealing with single objective, 16 

multi-objective and many objective classes in recent years (Cao, Zhao, et al., 2020; Cao et al., 17 

2019). In single objective cases, the scenario is simpler than many objective problems, but 18 

then the searching logics in single objective methods can be generalized to develop many 19 

objective variants (Cao, Wang, et al., 2020). In this regard, many logics have been utilized 20 

aiming for finding better solutions in dealing with real-world cases (Y. Duan et al., 2023). 21 

For example, large neighborhood search was a successful logic that has been utilized for 22 

many real-world cases (Xu & Wei, 2023). Metaheuristic algorithms (MAs) are optimization 23 

logics explicitly designed to ascertain approximate solutions for complex global optimization 24 

problems (Jia & Lu, 2024). Typically, these algorithms do not depend on the inherent 25 

structural characteristics of the given problems; instead, they exhibit remarkable versatility 26 

and robustness, enabling them to effectively traverse solution spaces in uncertain 27 

environments to identify global optima or near-optimal solutions (Peng et al., 2023). 28 

Fundamental characteristic of MAs resides in their ability to integrate global random search 29 

with local search strategies, enabling them to simulate the intelligent phenomena found in 30 

nature, such as biological evolution, physical processes, and animal swarm behavior. 31 
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Through an iterative process, these algorithms persistently explore uncharted areas of the 1 

solution space while concurrently attempting to refine and improve upon the currently 2 

discovered solutions. 3 

In recent years, there has been an increasing focus on exploring and implementing MAs. 4 

This surge in interest can primarily be attributed to the inherent benefits that these algorithms 5 

can offer for single objective, multi-objective, and many objective problems (Cao, Wang, et 6 

al., 2020; Bin Cao et al., 2021). Firstly, the scalability of MAs is remarkably high, enabling 7 

its applicability to both linear and nonlinear problems, as well as single and multi-mode 8 

scenarios and problems of varying dimensions (Sahoo et al., 2023). Secondly, the application 9 

of MAs is straightforward, as they can be designed and implemented directly, even without 10 

knowledge of the derivative of the objective function (Sun et al., 2019). Compared to 11 

mathematical methods and traditional optimization algorithms (Qiao et al., 2024; Zhao et al., 12 

2024), MAs can, to some extent, overcome the challenges associated with the vast 13 

complexity of mathematical reasoning, potential determinism, and other issues (Li et al., 14 

2023). Thirdly, MAs demonstrate significant computational efficiency, typically requiring 15 

fewer computational resources than precise optimization methods, making them suitable for 16 

solving large-scale optimization problems (Zhang et al., 2024). 17 

MAs find extensive applications in diverse domains. Specifically, within the realm of 18 

medical image segmentation, MAs served the purpose of identifying the most advantageous 19 

combination of thresholds for multi-threshold images (Guo et al., 2024; Sahoo et al., 2023). 20 

In the domain of engineering optimization, MAs were employed to ascertain the parameters 21 

in the implementation engineering to enhance the design (Ferahtia et al., 2023; Matoušová et 22 

al., 2023). In the realm of deep learning, MAs were employed to refine the quantity of 23 

hyperparameters or neural network nodes within a model (Asif et al., 2023; Emam et al., 24 

2023). In machine learning, MAs were utilized to select crucial data features (Meola et al., 25 

2023; Xie et al., 2023).  26 

Many MAs have been made known, with a wide range of sources for inspiration. 27 

However, this source is not the main point to focus on it, as the main key is the mathematical 28 

model and performance features of the MAs. This paper categorizes MAs into four distinct 29 

classifications, considering the variations in the phenomena they have encountered (Rajwar et 30 

al., 2023). These categories include evolutionary algorithms, swarm intelligence algorithms, 31 

physical law-based algorithms, and miscellaneous algorithms. Figure 1 visually illustrates the 32 

classification of MAs. 33 
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 1 

Figure 1. Classification of MAs. 2 

The evolutionary algorithms, which are regarded as the earliest MAs, draw inspiration 3 

from the processes of natural selection and the fundamental principles of genetics. These 4 

algorithms necessitate the construction of an accumulation of potential solutions and 5 

subsequently iteratively apply designated operators to produce novel candidate solutions. The 6 

genetic algorithm (GA) (Holland, 1992) stands as the earliest and most renowned algorithm 7 

in this domain. Through a sequence of operations such as selection, recombination, and 8 

mutation, GA generates new solutions and subsequently assesses and selects solutions using 9 

fitness functions. The differential evolution algorithm (DE) (Storn & Price, 1997) is also a 10 

type of evolutionary algorithm. DE generally exhibits superior performance compared to GA 11 

(Wang et al., 2022). Furthermore, several other evolutionary algorithms have been proposed, 12 

such as genetic programming (GP) (Koza, 1994), evolution strategy (ES) (Beyer & Schwefel, 13 

2002), and human evolutionary optimization algorithm (Lian & Hui, 2024). 14 

Swarm intelligence algorithms represent a significant division of MAs, with most MAs 15 

falling under this particular category. A swarm intelligence algorithm serves as an 16 

optimization and calculation technique, drawing inspiration from the conduct of various 17 

natural organisms, including but not limited to ants, bees, fish, and birds. This algorithm 18 

category mimics the process by which a collective of organisms can effectively address 19 
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intricate problems through uncomplicated interactions among a crowd of individuals (Wang 1 

& Zhang, 2023). Despite the individual limitations, the collective as a whole demonstrates 2 

remarkable intelligence and optimized behavior. Particle swarm optimization (PSO) (B. Cao 3 

et al., 2021) represents a traditional group intelligence algorithm. Each "particle" possesses 4 

both speed and position, and its state of motion is consistently updated by considering its 5 

historical optimal solution and the global optimal solution to discover the global optimal 6 

solution within the problem space. Additionally, there exist several other swarm intelligence 7 

algorithms, including grey wolf optimizer (GWO) (Mirjalili et al., 2014), bat algorithm (BA) 8 

(Yang & Hossein Gandomi, 2012), artificial bee colony (ABC) (Karaboga, 2005), coati 9 

optimization algorithm (Dehghani et al., 2023), greylag goose optimization (El-kenawy et al., 10 

2024), spider wasp optimizer (Abdel-Basset et al., 2023). Any of these methods, has its own 11 

limitations and weaknesses that make them inefficient in dealing with some complex 12 

problems (Yin et al., 2020). 13 

Physical law-based algorithms, which constitute the third type of MAs, draw inspiration 14 

from various physical phenomena, including attraction, repulsion, and gravity. Additionally, 15 

these algorithms incorporate principles from chemical processes, such as chemical reactions 16 

and molecular interactions. An exemplary algorithm that exemplifies this approach is 17 

simulated annealing (SA) (Kirkpatrick et al., 1983). SA employs the principles of energy 18 

conversion and system balance, observed in solid annealing processes in the physical realm. 19 

By doing so, SA has devised a method that effectively avoids local optimization and instead 20 

identifies global optimal solutions in intricate search spaces. Other physical law-based 21 

algorithms include the gravitational search algorithm (GSA) (Rashedi et al., 2009), 22 

biogeography-based optimization (BBO) (Simon, 2008), atom search optimization (ASO) 23 

(Zhao et al., 2019), artificial physics algorithm (APA) (Xie et al., 2009), artificial chemical 24 

process (ACP) (Irizarry, 2004), ions motion optimization (IMOA) (Javidy et al., 2015), and 25 

thermal exchange optimization (TEO) (Kaveh & Dadras, 2017). However, some of these 26 

methods cannot perform strong in multimodal problems, while others may converge to local 27 

optima, rapidly (Wang et al., 2017). 28 

This article categorizes various heuristic phenomena, including human behavior, game 29 

strategies, mathematical theorems, and more, as part of the miscellaneous algorithms. These 30 

algorithms form the basis for these heuristic phenomena and are relatively new, presenting 31 

innovative perspectives for advancing MAs. The teaching-learning-based optimization 32 

(TLBO) (Rao et al., 2011) method replicates the process of student teaching in a classroom 33 
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setting. This algorithm draws inspiration from the educational concepts of "learning from 1 

teachers" and "learning from peers", which involve collaboration and knowledge exchange 2 

among individuals with varying levels of expertise and understanding. There are also other 3 

algorithms, such as harmony search (HS) (Geem et al., 2001), exchange market algorithm 4 

(EMA) (Ghorbani & Babaei, 2014), group search optimizer (GSO) (He et al., 2009), and 5 

mother optimization algorithm (Matoušová et al., 2023). Convergence to wrong best 6 

solutions, immature performance, weak results, and imbalance of local search and global 7 

search are some of observed weaknesses in this group (Luo et al., 2024). Also, some of these 8 

methods may not be an original model, but they used a new metaphor and a similar structure 9 

and operations to previously existing methods. 10 

Significant research has been conducted on original MAs and their advancements within 11 

the past few years (Sun et al., 2018). Whether it is imperative to propose novel algorithms is 12 

an issue that necessitates resolution. The field of MAs is still in its early stages compared to 13 

physics, chemistry, or mathematics (Rajwar et al., 2023). Hence, despite numerous MAs, due 14 

to the lack of solid theoretical backing, enhancing MAs can be achieved through the 15 

continuous presentation of innovative concepts to attain superiority. Furthermore, while 16 

certain algorithms demonstrate success in benchmarking functions, they are highly 17 

ineffective when applied to real-world problems. No free lunch (NFL) theory (Wolpert & 18 

Macready, 1997) supports the notion that a special algorithm cannot adapt to all forms of 19 

optimization problems and still shows best performance. With the rapid advancement of 20 

various fields, numerous challenging optimization problems continue to emerge. Existing 21 

optimization techniques may not be sufficient to solve these problems satisfactorily, 22 

necessitating the development of new optimization techniques to address them. In specific 23 

fields, many scholars have proposed algorithm improvements, such as multi-level threshold 24 

image segmentation (Hao et al., 2023; Qian et al., 2023), feature selection (Hussein et al., 25 

2023; Kundu & Mallipeddi, 2022), and combinatorial optimization problem (S. Duan et al., 26 

2023; Wang et al., 2024). Lastly, the innovative ideas of some new algorithms can offer new 27 

models and views to enhance existing optimization algorithms. Existing MAs have their 28 

strengths and limitations, providing valuable insights and aiding in developing more 29 

advantageous MAs. Scholars can design faster and more efficient optimization algorithms by 30 

introducing novel ideas and techniques. The emergence of hybrid MAs is the strongest 31 

evidence (Bouaouda & Sayouti, 2022; Jaafari et al., 2019; Ngo et al., 2022). 32 
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Existing metaheuristic algorithms have certain limitations when dealing with complex 1 

optimization problems, such as (a) the presence of overly complex functions, which can 2 

cause the algorithm to get stuck in local optima; (b) low computational efficiency; and (c) 3 

declining performance in high-dimensional search spaces. This paper presents a useful swarm 4 

intelligence algorithm called moss growth optimization (MGO), inspired by the pattern of 5 

moss growth in nature. Unlike traditional MAs, MGO divides the population into major 6 

individuals according to dimensions and calculates the evolution direction of the population 7 

based on the gap between the best individual and the major. This mechanism is significantly 8 

different from that of other MAs. Based on this method, MGO is comprised of three primary 9 

mechanisms: spore dispersal search, dual propagation search, and cryptobiosis mechanism. 10 

Additionally, one of the core ideas of MGO is the determination of wind direction, which 11 

significantly impacts the overall evolution of the population. Inspired by the dispersal of 12 

moss spores, spore dispersal search includes two types of steps that correspond to the 13 

different performances of spores in stable winds and turbulent winds, which are beneficial for 14 

conducting global searches in different ranges. Dual propagation search combines sexual 15 

reproduction and vegetative reproduction in moss, achieving local exploitation of the 16 

algorithm through computations with the optimal individual. The cryptobiosis mechanism 17 

changes the traditional approach of directly modifying the individual solutions and replaces 18 

the greedy selection mechanism, preventing the algorithm from getting trapped in local 19 

optimal solutions. 20 

In the experiments, qualitative analysis was initially conducted to analyze the 21 

characteristics of MGO. Afterward, to validate the performance of MGO, comparisons were 22 

made between MGO and 10 original algorithms as well as 10 advanced algorithms in the 23 

CEC 2017 (Wu et al., 2017) and CEC 2022 (Ahrari et al., 2022). Furthermore, parameter 24 

sensitivity analysis was conducted to determine the optimal parameters MGO used and 25 

analyze the suitable problem scale employed by MGO. Lastly, the running time of MGO was 26 

analyzed, and MGO was applied to 4 engineering optimization problems. 27 

In summary, the contributions of this paper are as follows: 28 

1. Based on natural phenomena, a useful metaheuristic algorithm called moss growth 29 

optimization has been proposed, drawing inspiration from the growth patterns of 30 

moss. 31 
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2. A mechanism called the determination of wind direction is suggested. It provides a 1 

useful approach for MAs by dividing and calculating the mean of the optimal 2 

individuals to determine the evolution direction of the population. 3 

3. The spore dispersal search technique is employed for global exploration, whereas 4 

the development strategy utilizes dual propagation search for local exploitation. The 5 

mechanism of cryptobiosis alters the method of directly updating individual 6 

solutions. 7 

4. Through conducting qualitative analysis experiments and parameter sensitivity 8 

experiments, the algorithmic attributes of MGO are thoroughly described to enhance 9 

its applicability to a wide range of optimization problems. 10 

5. A comparison experiment was carried out to assess the effectiveness of MGO 11 

compared to 20 other algorithms using a set of benchmark functions, thus 12 

demonstrating the advantages of MGO. 13 

6. The MGO algorithm has been utilized in four real-world engineering optimization 14 

problems, initially presenting the algorithm's capability to address practical 15 

optimization problems. 16 

The remaining sections of this paper are structured as follows. Section 2 presents the 17 

natural occurrence of moss growth in relation to MGO and the comprehensive mathematical 18 

model of the MGO algorithm. Section 3 presents a sequence of experiments combined with 19 

analysis, including qualitative analysis, performance comparison experiments, parameter 20 

sensitivity analysis, time spent analysis, and experiments on engineering design problems. 21 

Section 4 concludes the entire paper and provides insight into future improvements and 22 

applications of MGO. 23 

2. Moss growth optimization 24 

This section will initially introduce the source of inspiration derived from moss and 25 

subsequently introduce the mathematical models of the algorithm. 26 

2.1 Inspired from moss 27 

Moss is one of the oldest types of land plants on Earth (Heckman et al., 2001). It commonly 28 

thrives in damp and shaded locales; nevertheless, it demonstrates resilience in diverse settings, 29 

ranging from wooded areas to metropolitan regions (Schaefer & Zrÿd, 2001). Although 30 
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lacking flowers, fruits, seeds, roots, or true vasculature (Lueth & Reski, 2023), this plant 1 

relies on distinctive mechanisms for reproduction. Specifically, they have three modes of 2 

reproduction: asexual, sexual, and vegetative. Additionally, cryptobiosis serves as a critical 3 

survival strategy that contributes to the perpetuation of the species. 4 

 5 

Figure 2. Different stages of moss. 6 

Moss exhibits a peculiar phenomenon known as heteromorphic alternation of generations, 7 

whereby the sporophyte and gametophyte stages alternate (Cove, 2005; Reski, 1998), as 8 

shown in Figure 2
1
. Sporophytes of moss release spores, which subsequently develop into 9 

new moss individuals called the gametophytes. This process coincides with asexual 10 

reproduction in moss. Moss spores are mainly released in the morning when wind speeds are 11 

relatively low (Johansson et al., 2016). Furthermore, spores released under stable wind 12 

conditions in the morning tend to travel more distances than those dispersed later in the day 13 

under more turbulent winds. This suggests that morning winds provide more favorable 14 

conditions for spore dispersal. Figure 3 demonstrates the dispersal of spores in stable and 15 

turbulent winds. Figure 3a illustrates that the spores exhibit a consistent trajectory and 16 

disperse over long distances in stable winds. Conversely, Figure 3b demonstrates that spores 17 

display erratic trajectories and disperse only over short distances in turbulent winds. 18 

                                                        
1 Pictures obtained from https://pixabay.com/ as copy right free images  
(a) https://pixabay.com/photos/moss-star-moss-forest-plant-2683009/  
(b) https://pixabay.com/photos/moss-nature-brick-wall-illuminated-7342179/. 

https://pixabay.com/
https://pixabay.com/photos/moss-star-moss-forest-plant-2683009/
https://pixabay.com/photos/moss-nature-brick-wall-illuminated-7342179/
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 1 

Figure 3. Dispersal of spores in stable and turbulent winds. 2 

Sexual reproduction of moss requires free-motile sperm to travel from male to female 3 

gametophytes (Rosenstiel et al., 2012). When the sperm, aided by water droplets present on 4 

the moss, attach to the eggs and fertilize them, they form zygotes. These zygotes further 5 

develop into the sporophytes of moss. The sporophyte depends on the gametophyte for 6 

nourishment and remains attached to it. Simultaneously, gametophytes that inhabit more 7 

favorable surroundings are inclined to yield sporophytes (Johnson & Shaw, 2016). The 8 

phenomenon of sporophyte growth is visually depicted in Figure 4. It is assumed that as one 9 

moves closer to the center of the depicted figure, the environmental conditions become more 10 

suitable for moss. Hence, the moss at the center is more inclined to foster sporophytes. In 11 

addition, gametophytes can contribute genes to sporophytes when produced through sexual 12 

reproduction. 13 

 14 

Figure 4. Growth of sporophytes. 15 

The regeneration of vegetative material is common in many moss species, with some 16 

shedding fragments that can form the basis of new individuals (Lueth & Reski, 2023). Figure 17 

5 illustrates that shedding fragments of moss are dispersed to various locations through the 18 

influence of wind, where they subsequently develop into new individuals. Notably, the 19 

dispersal of fragments tends to be more localized than the dispersal of spores. 20 
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Cryptobiosis refers to a state of life that is reversible ametabolic, distinguished by the 1 

cessation of all metabolic processes (Cannone et al., 2017). This peculiar state enables 2 

mosses to endure periods of highly challenging conditions. Furthermore, mosses possess the 3 

capacity to revive when conditions become suitable again. 4 

 5 

Figure 5. Vegetative reproduction. 6 

In summary, this paper is inspired by the growth mechanism of moss and proposes a 7 

useful algorithm named the MGO method. This algorithm incorporates a spore dispersal 8 

search for global search space exploration. Subsequently, a dual propagation search is 9 

introduced to facilitate local exploitation, which simulates both sexual reproduction and 10 

vegetative reproduction. Lastly, a cryptobiosis mechanism is presented as an improved 11 

greedy selection mechanism. 12 

2.2 Mathematical model and optimization algorithm 13 

In this section, based on the growth model formulated by moss, this paper first presents the 14 

four key stages: determination of wind direction, spore dispersal search, dual propagation 15 

search, and cryptobiosis mechanism. Among them, determining wind direction is the most 16 

critical mechanism, and it decides the evolutionary direction of the population. Subsequently, 17 

we introduce the MGO algorithm. 18 

2.2.1 Determination of wind direction 19 

The growth of moss is influenced by the presence of wind, primarily due to the crucial role 20 

wind plays in the dispersal of spores. Due to the significance of wind direction, MGO has 21 

developed a creative mechanism called "determination of wind direction." This mechanism 22 

utilizes the position relationship between most individuals and the optimal individual to 23 

determine the evolutionary direction of all individuals in the population. This evolutionary 24 
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direction effectively helps MGO avoid trapping into local optimum solutions. It should be 1 

noted that the MGO algorithm considers a single moss individual as a search agent  . The 2 

algorithm's population   is comprised of all moss individuals. In this paper, to emulate the 3 

wind direction by relying on the following assumptions made by the MGO algorithm: 4 

1. The wind direction remains constant throughout an entire iteration. 5 

2. Assuming that moss individuals represent the positions within the solution space, the 6 

current best candidate position corresponds to the current moss individual in the 7 

optimal solution. 8 

3. The direction of the wind always blows from areas with a higher quantity of moss 9 

towards the individual moss in the most favorable growth environment. 10 

The most exceptional individual within the population   is      . This paper employs 11 

the j-dimensional value of       as a threshold and compare the j-dimensional values of all 12 

individuals with it. Based on this comparison,                                      13 

              and                                                    are 14 

partitioned, where      is the j-th particle of the i-th moss individual, and     is the 15 

dimension of moss individual. Then, the set with the larger number of members is selected, 16 

as illustrated in Eq. (1). 17 

       {
                            

                            
 (1) 

where function ( )count   indicates calculating the quantity of moss individuals in a given 18 

collection of sets. 19 

For sets acquired subsequent to numerous divisions, refer to Eq. (2). 20 

                                    ⋂  

  

   

      
       (2) 

where    denotes the number of times to be divided, and in this paper the value of    is 21 

set to ⌊     ⌋ and is not less than 1. ⌊ ⌋ denotes the floor function of the enclosed number.    22 

represents the j-th random number, conforming to a range            , and satisfies Eq. (3). 23 

 ⋂   

  

   

   (3) 

In this paper, a brief simulation of the wind is performed, where the wind always comes 24 

from the region      to the most exceptional individual      , as illustrated in Figure 6. The 25 

precise computation of the wind's direction is demonstrated in Eq. (4). 26 
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∑  

   

   

             (4) 

where        represents the calculated wind direction, which has the same dimension as 1 

the individuals. The variable     indicates the total number of individuals in the     . The 2 

calculation of      can be observed in Eq. (5). The reason for calculating the mean distance 3 

between major individuals and       is that this method can help smooth the path of 4 

individuals approaching      , thereby enhancing the optimization ability of MGO. 5 

                         (5) 

where      denotes the collection of distances that separate individuals within the      6 

with respect to      . 7 

 8 

Figure 6. The process of wind direction. 9 

2.2.2 Spore dispersal search 10 

The exploration phase of the MGO involves the spore dispersal search. In situations where 11 

there is a significant presence of wind, the dispersal of spores occurs in a highly 12 

unpredictable manner, resulting in a substantial transmission distance. Under stable wind 13 

conditions, spores are capable of traveling a greater distance, whereas under turbulent 14 

conditions, they tend to disperse over shorter distances. The majority of spores are dispersed 15 

in stable wind conditions, while a minor portion disperses during turbulent conditions. 16 

Ultimately, as wind strength diminishes, spores begin to settle in closer proximity to the moss. 17 

In this paper, the position of spores is considered a new solution. Modeling is conducted 18 

to simulate the dispersal characteristics of spores through wind, as shown in Figure 7. The 19 

position of spores is determined in Eq. (6). The difference in the size of the two steps is 20 

significant. This allows individuals to make random choices to prevent fixed step lengths 21 
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from causing slow convergence in the early stages of failure to converge in the later stages, 1 

ensuring population diversity. 2 

   
    {

                         

                         
 (6) 

where   
    denotes a novel moss that is acquired through the dispersal of spores from i-3 

th moss individual   .    is a random number in the range      , while    is a constant 4 

parameter that is set to 0.2 in this paper. If      , Spores disperse under stable wind 5 

conditions, whereas they disperse under turbulent conditions.       represents the distance 6 

of spore dispersal in stable wind conditions, as shown in Eq. (7).       represents the 7 

distance of spore dispersal in turbulent wind conditions, as shown in Eq. (8). 8 

                    (7) 

where   is a constant parameter that is set to 2 in this paper.    is a random vector in the 9 

range      , which has the same dimension as       .   is the strength of wind, which 10 

diminishes as the iterations progress, as shown in Eq. (9). 11 

                           
 

 
          √       (8) 

where    is a random vector in the range      , which has the same dimension as       . 12 

The values for   is shown in Eq. (10). 13 

     
   

      
 (9) 

where     denotes the present count of evaluations, while        signifies the 14 

maximum number of iterations. 15 

   
           

        
 (10) 

where   represents the proportion of the population in      to the population in  . 16 
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 1 

Figure 7. Search process of spore dispersal search. 2 

2.2.3 Dual propagation search 3 

The exploitation phase of the MGO involves the dual propagation search, which simulates 4 

both sexual reproduction and vegetative reproduction, resulting in new individuals, created 5 

through sexual and vegetative reproduction, who are located close to the original individual. 6 

It should be noted that when utilizing dual propagation search, the condition       must be 7 

satisfied, where   represents a random number within the range      . During sexual 8 

reproduction, individual genes are used as solutions, allowing new individuals to acquire 9 

genes from current and the best individuals. During vegetative reproduction, fragments from 10 

moss individuals can develop into new individuals, which is considered a new solution. The 11 

dispersal of fragments, similar to the dispersal of spores, is also influenced by the wind. 12 

Compared to spore dispersal, the method of dual propagation search allows moss to 13 

reproduce within a more confined area, yet it facilitates the rapid identification of the optimal 14 

habitat for the moss. 15 

An imitation is performed on the dual propagation search, as shown in Figure 8. And the 16 

position of new moss individual is determined in Eq. (11). The method differs from 17 

traditional MAs in that it increases the proportion of methods that only change one individual 18 

dimension, strengthening the overall local exploration ability. 19 

 {
  

                                  

    
                                   

 (11) 
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where   
    denotes the i-th new individual,     

    denotes the j-th particle in   
   , and 1 

j is a random number that does not surpass the maximum dimension of the individual. The 2 

current optimal individual is represented by      .         represents the j-th particle in 3 

     .         is the j-th particle in       .    is a random number in the range      .    4 

is a constant parameter that is set to 0.5 in this paper. If      , dual propagation search is 5 

simulated in the sexual reproduction stage, whereas it is simulated with a different calculation 6 

in the vegetative reproduction stage. Then     evaluates whether the particles within the 7 

      are being utilized, and it is shown in Eq. (12). Finally, the calculation of       is 8 

shown in Eq. (13). 9 

     

{
 

       
 

         
    

      
 

         
    

 (12) 

where    is a random vector in the range      , which has the same dimension as      . 10 

                      (13) 

where    is a random number in the range      , and   is the strength of wind. 11 

 12 

Figure 8. Search process of dual propagation search. 13 

2.2.4 Cryptobiosis mechanism 14 

This paper proposes a useful mechanism named the cryptobiosis mechanism to improve the 15 

greedy section mechanism. The phenomenon of cryptobiosis refers to the capability of moss 16 

to restore and flourish following a period of inactivity or aridity. Where moss confronts arid 17 

circumstances or loses its water supply, it desiccates and enters a state of metabolic dormancy. 18 

Once conditions become favorable, moss has the ability to revive. 19 

Inspired by the phenomenon of cryptobiosis, this paper proposes a mechanism for 20 

recording the historical information of moss individuals. This method differs from the 21 
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conventional method, in which individuals are directly altered. Instead, this mechanism keeps 1 

a record of the moss individuals produced in each iteration. Once certain conditions are met, 2 

such as reaching the maximum number of records (which is set to 10 in this paper) or 3 

concluding the population iteration, the mechanism is triggered to revive the optimal 4 

individual and replace the current one. On one hand, the cryptobiosis mechanism enables 5 

moss individuals to explore repeatedly from the same location, thus ensuring the ability of the 6 

entire population to explore globally. On the other hand, moss individuals can be replaced 7 

under certain conditions, thereby guaranteeing the population's quality. 8 

The general process of cryptobiosis mechanism can be seen in Figure 9. For the i-th 9 

individual    within the moss population,    corresponds to the 0-th record. The remaining 10 

nine records are labeled as    
 , where   denote the  -th record of   . It is evident that the 11 

7th record    
  obtains the optimal solution. This paper marks the best record as    

    , then 12 

   is modified to    
    . The pseudo-code of the cryptobiosis mechanism is shown in 13 

Algorithm 1. 14 

 15 

Figure 9. Process of cryptobiosis mechanism. 16 

 17 

Algorithm 1: Pseudo-code of cryptobiosis mechanism 18 

1.  Input:   : i-th solution 19 

         : maximum number of records 20 

2. Output: Updated    21 

3.          22 

4. While (          ) 23 

5.  If          24 

6.      
          25 
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7.                   1 

8.  End if 2 

9.  Update the    3 

10.     
          4 

11.                  5 

12.  If                      6 

13.      
          7 

14.   For            8 

15.    If        (   
      )             

      9 

16.        
        

       10 

17.    End if 11 

18.   End for 12 

19.         
     13 

20.            14 

21.  End if 15 

22.            16 

23. End while 17 

24.  Return    18 

2.2.5 Proposed MGO algorithm 19 

In summary, firstly, taking inspiration from the phenomenon governing the dispersal of moss 20 

spores through the wind, a mechanism employing two-stage search steps is put forward. This 21 

mechanism, named spore dispersal search, is subsequently utilized to conduct global 22 

exploration, serving as a fundamental optimization technique within the MGO. Then, 23 

drawing inspiration from the sexual and vegetative reproduction of moss, dual propagation 24 

search is introduced as another optimization method for the MGO. This mechanism enables 25 

effective searching around the optimal individual, which is advantageous for conducting local 26 

exploitation searches. Lastly, based on the phenomenon of cryptobiosis of moss, an improved 27 

greedy selection mechanism, named cryptobiosis mechanism, is proposed. This mechanism 28 

enables multiple explorations of the original individual, thus preventing the trap of local 29 

optima and simultaneously enhancing the population's quality.  30 

The MGO algorithm begins by generating a set of random individuals. During each 31 

iteration, the population's evolution direction is determined based on determination of wind 32 
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direction, followed by spore dispersal search. Dual propagation search is performed if 1 

        , otherwise it is skipped. Individual solutions are updated according to the 2 

cryptobiosis mechanism. The overall structure of the algorithm in terms of flow chart and 3 

pseudo-code is shown in Figure 10 and Algorithm 2. 4 

2.2.6 The time complexity of MGO 5 

The complexity of MGO mainly includes initialization, fitness calculation, determination of 6 

wind direction, spore dispersal search, dual propagation search, and cryptobiosis mechanism. 7 

Among them,   denotes the number of moss individuals,   denotes the dimension of the 8 

individual,   denotes the maximum number of iterations, and   denotes the maximum 9 

number of records of cryptobiosis mechanism. The time complexity of initialization is     . 10 

The time complexity of fitness calculation is     . The time complexity of determining wind 11 

direction is         . The time complexity of the spore dispersal search is       . 12 

The time complexity of dual propagation search in the two cases is        and     . The 13 

time complexity of the cryptobiosis mechanism is       . Therefore, the overall time 14 

complexity of MGO is               . 15 
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 1 

Figure 10. Flowchart of MGO. 2 

Algorithm 2: Pseudo-code of MGO algorithm 3 

1. Input:  : population size 4 

   : the problem dimensions 5 

2. Output: Optimal solution 6 

3. Initialize a set of   7 

4. Calculate the fitness of   8 

5. Calculate the current optimal agent       and optimal fitness        9 

6.  While (          ) 10 

7.  Calculate the wind direction        by Eq. (4) 11 
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8.  For       1 

9.   Create the new search agent   
     equals    2 

10.   Update the   
     by Eq. (6) 3 

11.   If          4 

12.    Update   
    by Eq. (11) 5 

13.   End if 6 

14.   If           
                    7 

15.            
    8 

16.                     
     9 

17.   End if 10 

18.  End for 11 

19.  For       12 

20.   Update    using the cryptobiosis mechanism 13 

21.  End for 14 

22.            15 

23.  End while 16 

24.  Return the best solution       17 

3. Experimental results and analyses 18 

This section carries out a series of experiments to ascertain the advantages and features of the 19 

MGO algorithm. Initially, the process of finding the optimal solution of the MGO algorithm 20 

is conducted through a quantitative analysis experiment. Subsequently, the MGO algorithm is 21 

compared with other peer algorithms to illustrate its performance advantages. The optimal 22 

parameters of MGO are then examined through a parameter sensitivity analysis experiment. 23 

Furthermore, time spent analysis is employed to analyze the running time of MGO. 24 

Ultimately, the application of the MGO algorithm to the engineering optimization algorithm 25 

is carried out as a means to showcase the potential of MGO in resolving real-world problems. 26 

In order to guarantee the fairness of the experiments, all experiments were conducted 27 

within an identical setting. The experimentation settings include an operating system of 28 

Windows 10 22H2 with 16GB RAM, a CPU of 12th Gen Intel (R) Core (TM) i7-12700 (2.10 29 

GHz), and MATLAB R2018b. 30 
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3.1 Qualitative analysis of MGO 1 

The qualitative analysis results of MGO for several standard unimodal and multimodal test 2 

functions are demonstrated in Figure 11. The functions used for experimental testing are 3 

derived from the classical 23 benchmark functions (Yao et al., 1999). This experiment 4 

includes four essential indicators: search history, the trajectory of the moss individual in the 5 

first dimension, the average fitness of the population, and the convergence curve. For this 6 

experiment, the population size of MGO was set to 20, and the algorithm was run for 500 7 

iterations. 8 

In the first instance, by documenting the placement of the optimal individual in every 9 

iteration and depicting its position on the corresponding two-dimensional layout, one can 10 

visually represent the search history. Utilizing this search history, the characteristics of MGO 11 

individuals during the quest for the optimal resolution can be clearly perceived. Subsequently, 12 

the trajectory of the moss individual in the first dimension is depicted by recording the first 13 

particle of the best individual in each iteration, showcasing the positional changes throughout 14 

the iterations. Furthermore, the average fitness value of the population is recorded after each 15 

iteration, which in turn facilitates the visualization of the average fitness trend and offers an 16 

overview of the population's progression throughout the iterations. Lastly, the fitness of the 17 

best individual in each iteration is documented to analyze the overall trend across the 18 

iterations within the algorithm. 19 

A depiction of the test function in three-dimensional form is observable in Figure 11a. 20 

Then, Figure 11b displays the distribution of historical searches in MGO. It is evident that, 21 

apart from a substantial number of clusters in close proximity to the global optimal solution, 22 

the optimal solutions also exhibit clusters in various other regions. Moreover, historical 23 

optimal solutions are dispersed across a broad spectrum of images, signifying the excellent 24 

global search capabilities of MGO, thereby facilitating the discovery of global optimal 25 

solutions. 26 
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 1 

Figure 11. Qualitative analysis experiment of MGO. 2 

Figure 11c illustrates the trajectory of the individual moss in the first dimension. As the 3 

iterations progress, the strength of the wind, denoted as E, gradually decreases, leading to a 4 

reduction in the search steps. The figure shows that the moss individual took large search 5 

steps during the early iterations, particularly in F7, F8, F9, F10, and F13, which 6 

approximately encompassed the entire exploration space. This facilitates escaping from local 7 



 - 24 - 

optima. Furthermore, it can be observed that F2, F10, F13, F14, and F18 exhibit a rapid 1 

reduction in search steps, indicating that the MGO algorithm possesses favorable adaptability 2 

and robustness. 3 

Figure 11d presents the average fitness of the population. It can be observed that, except 4 

for F8 and F9, the average fitness of other functions fluctuates less, and the average fitness of 5 

all functions shows a decreasing trend, indicating that the quality of the population gradually 6 

improves as the iterations proceed. 7 

Figure 11e shows the convergence curve of MGO. Due to the larger strength of the wind 8 

E  in the spore dispersal search in the early stage, the convergence of the first half of the 9 

curve in F9, F10, and F13 is slower. As E  it decreases, the convergence speed gradually 10 

increases, which is conducive to sufficient search in the early stage and prevents falling into a 11 

locally optimal solution. In addition, all functions have a downward trend as a whole, 12 

indicating that the combination of spore dispersal search and dual propagation search can 13 

effectively find the globally optimal solution. 14 

In conclusion, MGO demonstrates remarkable characteristics, including strong global 15 

search capabilities, the ability to escape local optima, good adaptability and robustness, and 16 

an effective convergence strategy. These features combine to make MGO a powerful 17 

algorithm for finding globally optimal solutions across a range of functions and optimization 18 

problems. 19 

3.2 Performance comparison experiment of MGO 20 

In this section, an analysis was conducted to establish the advantage of the GMO algorithm 21 

by means of a comparative study against ten original algorithms and ten advanced algorithms. 22 

3.2.1 Comparison with original algorithms on CEC 2017 23 

In this section, a comparison was made between MGO and ten original algorithms that 24 

include slime mould algorithm (SMA) (Li et al., 2020), rime optimization algorithm (RIME) 25 

(Su et al., 2023), Harris hawks optimization (HHO) (Heidari, Mirjalili, et al., 2019), whale 26 

optimization algorithm (WOA) (Mirjalili & Lewis, 2016), PSO (Kennedy & Eberhart, 1995), 27 

sine cosine algorithm (SCA) (Mirjalili, 2016), moth-flame optimization (MFO) (Mirjalili, 28 

2015), firefly algorithm (FA) (Yang, 2009), GWO (Mirjalili et al., 2014), and bat algorithm 29 

(BA) (Yang, 2010). The default values for the key parameters of the algorithms employed in 30 

the comparison were all selected, and comprehensive information regarding these parameters 31 

can be found in Table 1. The test functions for comparative analysis originate from CEC 32 
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2017 (Wu et al., 2017). The functions from the CEC 2017 are displayed in Table 2, and they 1 

encompass a diverse range including unimodal, multimodal, hybrid, and composition 2 

functions. It should be noted that the F2 test function in CEC 2017 will not be utilized in this 3 

paper due to its inherent instability. Furthermore, the subsequent function numbers will 4 

follow the original order of CEC 2017 rather than the order after removing F2. All algorithms 5 

were executed in identical conditions to ensure fairness in comparative experiments. The size 6 

of population was established at 30, while the dimensions and evaluations count were set at 7 

30 and 300,000 respectively. In order to mitigate the influence of stochastic factors on the 8 

outcomes of the algorithms, all the algorithms being compared were independently executed 9 

30 times for each function and the results were averaged to yield the final running outcome. 10 

Table A1 (Appendix) demonstrates the average (Avg) and standard deviation (Std) 11 

values of MGO and the original algorithms utilized in the experiment after 30 independent 12 

runs. The algorithm's closeness to the optimal solution of the benchmark function can be 13 

discerned by observing the smaller Avg value, while a smaller Std value indicates a more 14 

consistent and reliable algorithm. Firstly, by observing Avg, it can be seen that aside from the 15 

F2 function, MGO has the capability to acquire the minimum Avg value or comes close to 16 

the algorithm that acquires the minimum Avg value in most functions. This demonstrates that 17 

the MGO algorithm possesses the ability to discover relatively superior solutions in most 18 

functions. Moreover, it is evident that MGO is better suited for solving intricate functions 19 

than unimodal ones. Subsequently, by observing Std, it can be observed that MGO attains the 20 

minimum Std values in 20 functions, indicating that MGO exhibits good stability. 21 

Furthermore, the Wilcoxon signed-rank test (WSRT) (Alcalá-Fdez et al., 2009) is 22 

employed to analyze the findings related to MGO and the performance of the original 23 

algorithms, as presented in Table 3. The p-value is a critical statistical measure in this test as 24 

it represents the probability of observing the sample difference or an even more extreme 25 

condition, assuming the null hypothesis is true. The calculation of the p-value helps us 26 

evaluate whether the observed performance difference is likely due to random variation only. 27 

If the p-value produced by the comparison is less than the significance level of 0.05, it is 28 

considered that the discrepancies between the two algorithms are statistically significant. The 29 

symbol '+' indicates the number of cases where MGO's overall performance exceeds that of 30 

the alternative functions across all test functions. Conversely, the symbol '-' denotes the 31 

number of instances where MGO's overall performance is inferior to that of other functions 32 

across all test functions. Lastly, the symbol '=' represents the number of cases where MGO's 33 
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overall performance is comparable to that of the alternative functions. The term 'Avg' 1 

indicates the average ranking after 30 iterations of parallelization, while 'Rank' denotes the 2 

overall final ranking. It can be discerned that MGO achieves a significantly better ranking 3 

than the second-placed algorithm when considering the comprehensive evaluation. 4 

Specifically, the mean ranking score of MGO amounts to 1.5517, which is notably superior to 5 

that of the runner-up. In detail, MGO outperforms the second-ranked algorithm in the 6 

majority of trial functions, specifically in 17 out of the total. Although there are 4 trial 7 

functions where MGO performs marginally worse and 8 where its performance is equivalent, 8 

these do not significantly impact the overall superior ranking of MGO. Therefore, Friedman’s 9 

test (FT) (Sheskin, 2003) was employed. The result of FT, as shown in Figure 12, reveals that 10 

MGO has achieved a minimum value of 1.97. The results of WSRT and FT demonstrate the 11 

consistent excellence of MGO compared to the other algorithms under consideration. 12 

 13 

Figure 12. The average ranking of MGO and original algorithms. 14 

In order to gain an intuitive comprehension of the algorithms' convergence, Figure 13 15 

presents the convergence curves of MGO and the original algorithms. In F23 and F24, it is 16 

evident that MGO exhibits a stronger ability to converge in the early stages than most 17 

algorithms. Based on the final results, MGO achieved the minimum value in all the selected 18 

functions, establishing a significant gap with other algorithms in F9, F12, and F22. This 19 

provides evidence to support the assertion that the MGO algorithm possesses an advantage in 20 

locating a global optimal solution. 21 
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In summary, following an experimental comparison with the original algorithms, it has 1 

been shown that MGO demonstrates a broad spectrum of applicability. Moreover, the MGO 2 

algorithm is better suited for addressing intricate functions than unimodal ones. It exhibits 3 

commendable stability, boasts significant advantages over other original algorithms, and 4 

ultimately proves to be a highly effective optimization algorithm. 5 

Table 1. Parameters of original algorithms. 6 

 7 

Table 2. Details of the CEC 2017. 8 

I

D 

Function Equation Class Opti

mum 

F

1 

Shifted and Rotated Bent Cigar Function 

Unimod

al 

100 

F

2 

Shifted and Rotated Sum of Different Power Function 200 

F

3 

Shifted and Rotated Zakharov Function 300 

F

4 

Shifted and Rotated Rosenbrock’s Function 

Multimo

dal 

400 

F

5 

Shifted and Rotated Rastrigin’s Function 500 

F Shifted and Rotated Expanded Scaffer’s F6 Function 600 

Algorithms Key parameters 

SMA        

RIME     

HHO     

WOA                           

PSO                    

SCA     

MFO                          

FA                   

GWO         

BA              
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6 

F

7 

Shifted and Rotated Lunacek Bi-Rastrigin Function 700 

F

8 

Shifted and Rotated Non-Continuous Rastrigin’s 

Function 

800 

F

9 

Shifted and Rotated Lévy Function 900 

F

10 

Shifted and Rotated Schwefel’s Function 1000 

F

11 

Hybrid Function 1 (  = 3) 

Hybrid 

1100 

F

12 

Hybrid Function 2 (  = 3) 1200 

F

13 

Hybrid Function 3 (  = 3) 1300 

F

14 

Hybrid Function 4 (  = 4) 1400 

F

15 

Hybrid Function 5 (  = 4) 1500 

F

16 

Hybrid Function 6 (  = 4) 1600 

F

17 

Hybrid Function 6 (  = 5) 1700 

F

18 

Hybrid Function 6 (  = 5) 1800 

F

19 

Hybrid Function 6 (  = 5) 1900 

F

20 

Hybrid Function 6 (  = 6 2000 

F

21 

Composition Function 1 (  = 3) 
Composi

tion 

2100 

F Composition Function 2 (  = 3) 2200 
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22 

F

23 

Composition Function 3 (  = 4) 
2300 

F

24 

Composition Function 4 (  = 4) 
2400 

F

25 

Composition Function 5 (  = 5) 
2500 

F

26 

Composition Function 6 (  = 5) 2600 

F

27 

Composition Function 7 (  = 6) 2700 

F

28 

Composition Function 8 (  = 6) 2800 

F

29 

Composition Function 9 (  = 3) 2900 

F

30 

Composition Function 10 (  = 3) 3000 

 1 

Table 3. Analysis result by using WSRT. 2 

Algorithms Rank +/=/- Avg 

MGO 1 ~ 1.5517 

SMA 3 26/2/1 4.0344 

RIME 2 17/8/4 2.2068 

HHO 6 29/0/0 6.8275 

WOA 9 29/0/0 8.4482 

PSO 5 23/4/2 5.7586 

SCA 11 29/0/0 8.7241 

MFO 8 29/0/0 7.4482 

FA 10 29/0/0 8.7241 

GWO 4 29/0/0 5.0344 

BA 7 24/2/3 7.1724 
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 1 

Figure 13. Convergence curves of MGO and original algorithms. 2 

3.2.2 Comparison with advanced algorithms on CEC 2017 3 

In order to further validate the superiority of MGO, in this section, we compared MGO with 4 

10 advanced algorithms, including a hybrid sine-cosine algorithm with a differential 5 

evolution algorithm (SCADE) (Nenavath & Jatoth, 2018), improved whale optimization 6 

algorithm (IWOA) (Tubishat et al., 2019), hybrid bat algorithm (RCBA) (Liang et al., 2018), 7 

opposition-based sine cosine algorithm (OBSCA) (Abd Elaziz et al., 2017), PSO with an 8 

aging leader and challengers (ALCPSO) (Chen et al., 2012), completely derandomized self-9 

adaptation in evolution strategies (CMAES) (Hansen & Ostermeier, 2001), boosted GWO 10 
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(OBLGWO) (Heidari, Abbaspour, et al., 2019), Cauchy and Gaussian sine cosine 1 

optimization (CGSCO) (Kumar et al., 2017), double adaptive random spare reinforced whale 2 

optimization algorithm (RDWOA) (Chen et al., 2020), and multi-swarm particle swarm 3 

optimization (MSPSO) (Xia et al., 2018). The default parameters as outlined in Table 4 are 4 

employed for all algorithms. The test set employed in this study is the CEC 2017. All 5 

algorithms in this study have a population size of 30 and a dimension of 30. The number of 6 

evaluations conducted is set to 300,000, and these evaluations are performed independently 7 

30 times. Table A2 (Appendix) presents the outcomes of the evaluation using the CEC 2017 8 

dataset, where Avg and Std were examined. The most favorable data points have been 9 

highlighted in bold. It can be seen that among the total of 29 functions, MGO achieved both 10 

the minimum Avg value and the minimum Std value in the majority of functions, specifically 11 

achieving the minimum Avg value in 15 functions and the minimum Std value in 16 12 

functions. Concretely, MGO possesses a significant advantage in multimodal functions, as it 13 

is able to achieve the minimum Avg in all multimodal functions except for F6. It still 14 

maintains its advantages in hybrid functions and composition functions, achieving five 15 

respective minimum Avg values. 16 

Furthermore, the WSRT and FT analysis results can be observed in Table 5 and Figure 17 

14. It is evident that MGO exhibited superior performance compared to advanced algorithms 18 

in at least 16 functions. Additionally, MGO attained the lowest average Avg of 1.7 in WSRT, 19 

and it obtained the best result of 1.96 in FT. This substantiates that MGO continues to 20 

possess commendable advantages compared to advanced algorithms. 21 

 22 
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Figure 14. The average ranking of MGO and advanced algorithms. 1 

 2 

Figure 15 shows the curve convergence of MGO with other advanced algorithms on 3 

CEC 2017. The functions selected for this study demonstrate MGO's remarkable search 4 

capability. MGO significantly outperformed other algorithms in F5, F8, F9, F20, and F21. 5 

For the remaining functions, MGO consistently performed well. Despite MGO's slightly 6 

slower convergence rate in the initial phase, it possesses an effective global search capability. 7 

In conclusion, when compared to advanced algorithms, MGO still maintains its 8 

advantages. It has shown a significant advantage in handling multimodal functions. Despite a 9 

slightly slower convergence rate during the initial stage, MGO retains its efficient global 10 

search capability. MGO is a resilient algorithm that effectively addresses a broad spectrum of 11 

optimization problems. 12 

 13 

Table 4. Parameters of advanced algorithms. 14 

 15 

Table 5. Analysis result by using WSRT. 16 

Algorithms Rank +/=/- Avg 

MGO 1 ~ 2.2069 
SCADE 11 29/0/0 9.7931 

IWOA 7 28/1/0 7.1724 

RCBA 8 21/5/3 7.4138 

OBSCA 10 29/0/0 9.1724 

ALCPSO 3 22/4/3 3.5862 

Algorithms Key parameters 

SCADE                                    

IWOA             

RCBA                       

OBSCA     

ALCPSO                                         

CMAES        

OBLGWO         

CGSCO     

RDWOA     

MSPSO                   . 
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CMAES 4 14/2/13 5.0690 

OBLGWO 6 28/1/0 5.3793 

CGSCO 9 29/0/0 8.1034 

RDWOA 5 25/2/2 5.1034 

MSPSO 2 16/2/11 3.0000 

 1 

 2 

Figure 15. Convergence curves of MGO and advanced algorithms. 3 

3.2.3 Comparison with advanced algorithms on CEC 2017 4 

In order to further illustrate the advantages of MGO and explicate its suitability for a wide 5 

range of functions not limited solely to CEC 2017, this section utilizes CEC 2022 (Ahrari et 6 
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al., 2022) as the experimental test set. The benchmarks within CEC 2022 are detailed in 1 

Table 6. The experiment entailed a comparison amongst 10 algorithms. These 10 algorithms 2 

were chosen from the above experiments, consisting of 5 original algorithms: RIME, GWO, 3 

PSO, WOA, and SCA, as well as 5 advanced algorithms: MSPSO, ALCPSO, IWOA, 4 

SCADE, OBLGWO. The selection of these 10 algorithms was based on their strong 5 

performance and their representativeness within CEC 2017. The key parameters of each 6 

algorithm are set according to the configurations used in the previous experiments. The 7 

population size in the experiment is set to 30, and the dimension is set to 20, which is the 8 

default value in CEC 2022. The experiment is independently run 30 times with 300,000 9 

evaluations per run. 10 

The Avg and Std of the experimental results obtained from 30 independent trials are 11 

provided in Table A3 (Appendix). It is evident from the data that MGO obtained the lowest 12 

Avg among the 8 functions and the lowest Std in 6 functions. Regarding the F1 function, 13 

while MGO did not achieve the minimum Avg, it is close to the optimal solution for this 14 

function. Experiment has validated that MGO exhibits commendable search capability and 15 

stability during the CEC 2022. The experimental results, subjected to WSRT analysis, are 16 

presented in Table 7. It is apparent that MGO's Avg is 1.75, placing it at the top among all the 17 

algorithms compared, and it possesses significant advantages over the other algorithms. 18 

Furthermore, when comparing MGO's performance to that of the second-ranked algorithm, 19 

RIME, it is evident that MGO outperforms RIME in eight functions. In three functions, the 20 

performance of MGO is similar to RIME, while in only one function MGO exhibits inferior 21 

performance compared to RIME. The results of the FT analysis can be observed in Figure 16 22 

It can be seen that MGO achieves a minimum value of 2.46, which is proven through FT 23 

statistics to establish MGO as the best algorithm among the algorithms being compared. 24 

Finally, Figure 17 presents the convergence curves for 6 functions in the experiment. 25 

Although MGO's initial convergence rate was slower than that of ALCPSO and RIME, the 26 

final results of MGO were superior. Furthermore, MGO has exhibited significant advantages 27 

in F4 and F7. This suggests that MGO strikes a favorable balance between exploration and 28 

exploitation. 29 

Overall, through many experiments and analyses, it has been demonstrated that MGO 30 

not only exhibits advantages at CEC 2017, but also possesses a substantial competitive edge 31 

at CEC 2022. This indicates the broad range of applications for MGO. 32 

 33 
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Table 6. Details of the CEC 2022. 1 

I

D 

Function Equation Class Opti

mum 

F

1 

Shifted and full Rotated Zakharov Function Unimod

al 

300 

F

2 

Shifted and full Rotated Rosenbrock’s Function 

Multimo

dal 

400 

F

3 

Shifted and full Rotated Expanded Schaffer’s f6 

Function 

600 

F

4 

Shifted and full Rotated Non-Continuous Rastrigin’s 

Function 

800 

F

5 

Shifted and full Rotated Levy Function 900 

F

6 

Hybrid Function 1 (  = 3) 

Hybrid 

1800 

F

7 

Hybrid Function 2 (  = 6) 2000 

F

8 

Hybrid Function 3 (  = 5) 2200 

F

9 

Composition Function 1 (  = 5) 

Composi

tion 

2300 

F

10 

Composition Function 2 (  = 4) 2400 

F

11 

Composition Function 3 (  = 5) 
2600 

F

12 

Composition Function 4 (  = 6) 
2700 

 2 

Table 7. Analysis result by using WSRT. 3 

Algorithms Rank +/=/- Avg 

MGO 1 ~ 1.75 
MSPSO 4 7/1/4 5.0833 

ALCPSO 3 9/3/0 4.75 

IWOA 8 10/2/0 6.75 
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SCADE 11 12/0/0 9.5 

OBLGWO 5 11/1/0 5.5833 

RIME 2 8/3/1 2.75 

GWO 7 12/0/0 6.6667 

PSO 6 9/2/1 6.5833 

WOA 10 10/2/0 8.4167 

SCA 9 12/0/0 8.1667 

 1 

Figure 16. The average ranking of MGO and other algorithms in CEC 2022. 2 

 3 

Figure 17. Convergence curves of MGO and other algorithms in CEC 2022. 4 
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3.3 Parameter sensitivity analysis 1 

In this section, an evaluation was conducted on various values of key parameters to ascertain 2 

the optimal ones for MGO. Subsequently, a series of comparative experiments were 3 

undertaken on the various general parameters of MAs to find an appropriate problem size for 4 

MGO. 5 

3.3.1 Analysis of critical parameters 6 

In this section, this paper alters the parameters   in the equations Eq. (7) and Eq. (8), as 7 

elaborated in section 2.2.2. This adjustment is necessary because the parameter has a 8 

significant impact on spore dispersal search, which also plays a crucial role in MGO’s global 9 

search capability—one of its noteworthy advantages. The experiment utilizes different values 10 

for the variable  , specifically 0.5, 1, 3, and 5, for comparison with the default value of 2. 11 

The comparison experiments are conducted within a standardized assessment framework, 12 

employing an equal number of populations, namely 30. And the dimension is set 30. The 13 

evaluations are carried out for a total of 300,000 evaluations, with the algorithm being 14 

independently parallelized in 30 instances. Furthermore, the CEC 2017 experimental test set 15 

is used as a benchmark for this evaluation. 16 

More specifically, the variable   has an impact on the distance of spore dispersal both 17 

in       and      . In Figure 18, the change in the first-dimensional value of       is 18 

depicted, where MGOi denotes the value of   is set to  . As the iteration proceeds, the 19 

magnitude of       gradually diminishes, thereby indicating a gradual reduction in the extent 20 

of global exploration. Furthermore, a higher value of parameter   indicates a wider scope of 21 

the search; however, resulting in slower convergence of      . 22 



 - 38 - 

 1 

Figure 18. The first-dimensional value of step1 with different parameters. 2 

Figure 19 illustrates the convergence curves of the five different parameters in the F5 3 

function, providing a more intuitive understanding of the effects of various parameters  . As 4 

previously stated, when the value of   is increased, it leads to a broader range of search, 5 

which in turn causes a decrease in the speed of convergence. It is evident that MGO5 took a 6 

significantly slower speed to reach convergence compared to MGO0.5 during the initial stages. 7 

However, the final outcome of MGO5 proved to be superior to that of MGO0.5. It is important 8 

to note that a larger   does not guarantee a better result. In fact, it can be observed that 9 

MGO3 achieved the best results. 10 

 11 

Figure 19. Convergence curves of different parameters w. 12 

The algorithm's ranking for five different parameters is displayed in Table 8, where the 13 

Mean denotes the average value of the algorithm across all functions. MGO3 achieved the 14 
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highest mean score of 2.1724, indicating its superior overall performance. Despite having a 1 

lower Mean score than MGO3, MGO2 still ranked within the top three for all functions 2 

except F14. Moreover, Figure 20 provides the results of the FT analysis. It is evident that the 3 

analysis of MGO2 from the FT perspective yielded superior results, with a value of 2.61. It is 4 

worth noting that although MGO2 performed the best, overall, the difference in FT values 5 

was not significant, indicating MGO's insensitivity to parameters. 6 

In actuality, it can be presumed that there is a minimal disparity between selecting 2 or 3. 7 

However, based on the aforementioned analysis, MGO2 converges at a faster speed than 8 

MGO3. Additionally, the search step is smaller, indicating that MGO2 is more stable. 9 

Therefore, this paper will adopt MGO2, which means set the value of   to 2. Researchers can 10 

select appropriate parameters based on the complexity of the problem and the number of 11 

iterations required. For simpler functions or fewer iterations, a smaller   parameter is 12 

suitable, whereas for more complex problems, a larger   parameter is recommended. 13 

Table 8. Ranking of results with different values of parameter w. 14 

Functions MGO0.5 MGO1 MGO2 MGO3 MGO5 

F1 5 4 3 2 1 
F3 3 1 2 4 5 

F4 5 4 3 2 1 

F5 5 4 2 1 3 

F6 5 4 3 1 2 

F7 5 4 2 1 3 

F8 5 4 1 2 3 

F9 5 4 2 1 3 

F10 2 1 3 4 5 

F11 5 4 2 1 3 

F12 5 1 2 3 4 

F13 5 1 2 4 3 

F14 1 2 4 3 5 

F15 4 1 2 3 5 

F16 5 4 3 2 1 

F17 4 3 2 1 5 

F18 1 2 3 4 5 

F19 5 1 2 3 4 

F20 5 4 3 1 2 

F21 5 4 3 2 1 

F22 2 1 3 4 5 

F23 5 4 2 1 3 

F24 4 5 2 1 3 

F25 5 4 3 1 2 

F26 5 1 2 3 4 

F27 5 2 3 1 4 
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F28 5 3 1 2 4 

F29 4 1 3 2 5 

F30 5 1 2 3 4 

Mean 4.3103 2.7241 2.4137 2.1724 3.3793 
Rank 5 3 2 1 4 

 1 

Figure 20. The average ranking of different parameters w. 2 

3.3.2 Analysis of population size and number of iterations 3 

For MAs, the optimization precision and efficiency of optimization problems are affected by 4 

population size and the number of iterations. It should be noted that, in this experiment, the 5 

operation is measured in terms of iterations, not evaluations. This is because the method of 6 

evaluation assesses the fitness of each individual in the function. As the population size 7 

increases, the number of evaluations used in each iteration also increases, decreasing the 8 

number of iterations. The relationship between iterations and evaluations can be seen in Eq. 9 

(14). 10 

                 (14) 

where     denotes number of iterations, Fes  denotes number of evaluations, and popSize  11 

denotes population size. 12 

To demonstrate the impact of population size on MAs, using iterations is clearly more 13 

effective, as it is not influenced by population size. The experimental population sizes were 5, 14 

10, 30, 50, and 100, while the number of iterations varied at 1,000, 1,500, 2,000, 2,500, and 15 

3,000. The dimension was set at 30, and each scenario was independently run 30 times, with 16 

the mean being calculated. The function used for testing is F6. 17 
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The test results are shown in Figure 21. It is apparent that as the size of Iterations 1 

increases, MGO always continuously seeks better solutions, regardless of the population size. 2 

Moreover, when Iterations is small, increasing the population size can effectively accelerate 3 

the convergence speed of the algorithm. However, after the population size exceeds 30, the 4 

additional effect becomes less apparent. In conclusion, the number of Iterations and the 5 

population size significantly impact MGO's search for optimal solutions and convergence 6 

speed. 7 

 8 

Figure 21. The influence of populations and iterations. 9 

3.3.3 Analysis of dimension 10 

In the calculation process of MGO, the mechanism for determining wind direction is based 11 

on the division of dimensions. Therefore, the number of dimensions of the problem is likely 12 

to significantly impact MGO. The experimental dimension consisted of 10, 30, 50, and 100 13 

settings. The size of the population was 30, while the number of evaluations conducted 14 

reached 300,000. Each independent run was repeated a total of 30 times. The experiment was 15 

tested at CEC 2017. 16 

Table A4 (Appendix) displays the Avg and Std in various dimensions of MGO. MGO10 17 

represents MGO running in a 10-dimensional space, while the others exhibit similar 18 

characteristics. It is evident that MGO10 achieved the best results and demonstrated the 19 

highest level of stability. In order to further examine the impact of dimensions on MGO, 20 
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Figure 22 presents a comparison test using FT between MGO and other algorithms. These 1 

algorithms are the same as those discussed in section 3.2.1. As the dimensions increase, the 2 

advantage of MGO gradually diminishes, with MGO ranking second in 100 dimensions, 3 

surpassed by RIME. It is evident from this observation that MGO is better suited for 4 

resolving optimization problems of lower dimensions. In addition, when addressing practical 5 

issues, researches can consider adjusting the value of    based on whether the population 6 

size is significantly smaller than the dimension, such as ⌊     ⌋, ⌊      ⌋, and so on. 7 

 8 

Figure 22. Friedman-rank of MGO and other algorithms in different dimensions. 9 

3.4 Time spent analysis 10 

The execution time of MAs is of great importance. In practice, this determines the 11 

efficiency of MAs when applied to real-world problems, especially for tasks with high real-12 

time requirements, where MAs with faster execution times have a more significant advantage. 13 

In this section, the run times of MGO are compared with 10 original algorithms on 4 14 

functions selected from the CEC 2017 test set. These functions are F1, F4, F11, and F21, 15 

respectively, corresponding to unimodal, multimodal, hybrid, and composition functions. All 16 

algorithms are executed under the same framework, with an equal number of populations of 17 

30 and a dimension set to 30. The evaluations are conducted for a total of 300,000 18 

evaluations, with the algorithm being independently parallelized in 30 instances. The specific 19 
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method for calculating the spend time is to take the average of the times obtained from 30 1 

independent runs. The measurement unit used is seconds. 2 

The running times of all the algorithms can be observed in Figure 23. It is evident that 3 

the WOA algorithm has the shortest total running time, followed by PSO, while the total 4 

running time of SMA is considerably higher than that of other algorithms. The running time 5 

details are specified in Table 9. The MGO's runtime is only marginally slower than that of the 6 

WOA by less than a second, a discrepancy that can be deemed permissible. 7 

 8 

Figure 23. Total running time of each algorithm. 9 

 10 

Table 9. Running time of MGO and other algorithms. 11 

Algorithms F1 F4 F11 F21 

MGO 4.712E+00 4.571E+00 4.763E+00 6.812E+00 
SMA 2.263E+01 2.592E+01 2.642E+01 2.836E+01 

RIME 4.565E+00 4.774E+00 5.011E+00 6.941E+00 

HHO 4.756E+00 4.555E+00 4.890E+00 7.009E+00 

WOA 3.832E+00 3.808E+00 4.010E+00 5.916E+00 

PSO 4.000E+00 3.942E+00 4.148E+00 6.051E+00 

SCA 4.887E+00 4.781E+00 5.029E+00 6.989E+00 

MFO 4.825E+00 4.658E+00 4.828E+00 6.737E+00 

FA 1.040E+01 1.001E+01 1.021E+01 1.221E+01 

GWO 5.214E+00 5.238E+00 5.357E+00 7.323E+00 

BA 5.153E+00 5.474E+00 5.551E+00 7.481E+00 

3.5 Time spent analysis 12 
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When compared to gradient-based methods, MAs offer significant benefits in terms of shape 1 

and structural optimization (Richards & Amos, 2016). They are particularly well-suited for 2 

handling complex, multimodal design spaces and highly nonlinear objective functions. 3 

Moreover, their user-friendly characteristics make them suitable for both designers and non-4 

specialist engineers. However, it should be noted that a particular algorithm may not be 5 

suitable for all optimization problems (Wolpert & Macready, 1997). This is why it is 6 

necessary to constantly propose novel algorithms and validate their applicability in specific 7 

domains. 8 

This section applies MGO to 4 engineering optimization problems. Engineering 9 

optimization problems refer to the use of specific techniques to find the most cost-effective 10 

and efficient solution for a problem or design in the field of engineering. The complex and 11 

highly constrained nature of engineering optimization problems presents a greater challenge 12 

for algorithms to resolve (Zhao et al., 2023). The algorithms employed for comparison 13 

include BA(Yang, 2010), Cuckoo search algorithm (CS) (Gandomi et al., 2013), GWO 14 

(Mirjalili et al., 2014), MFO (Mirjalili, 2015), opposition-based sine cosine algorithm 15 

(OBSCA) (Abd Elaziz et al., 2017), RIME (Su et al., 2023). For all experiments, the 16 

population size is fixed at 50, and the iteration count is set to 2000. Each algorithm is 17 

independently run 50 times to obtain optimal solutions, which are then used as the basis for 18 

the results. 19 

3.5.1 Pressure vessel design problem 20 

The pressure vessel design (Mirjalili, 2015) is a problem of engineering optimization, 21 

with the objective of assessing the most suitable thickness for the shell   , the thickness of 22 

the head   , the inner radius  , and the length of the shell, denoted as  . These parameters 23 

are determined in order to minimize the overall cost of material, forming, and welding, taking 24 

into consideration four specific constraints. It is worth noting that    and    are values 25 

expressed as integer multiples of 0.0625 in., which represent the available thicknesses of 26 

rolled steel plates, while   and   are continuous variables. Figure 24 depicts the structure of 27 

the pressure vessel design. The subsequent is the mathematical representation of the problem. 28 

Consider: 29 

                            

Objective: 30 
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Subject to: 1 

                 
                  

       
    

 

 
   

           

           

 

Variable ranges:  2 

                      
            

 

As evidenced by the data presented in Table 10, while MGO did not attain the minimum 3 

thresholds for every parameter, it yielded the most economical outcome regarding pressure 4 

vessel design. This demonstrates the benefits and advantages with the utilization of MGO. 5 

 6 

Figure 24. Structure of pressure vessel design. 7 

 8 

Table 10. Comparison results of pressure vessel design problem. 9 

Algorithms 
Optimum variables Optimum 

cost           

MGO 0.81250 0.43750 42.09771 176.64590 6059.80750 

BA 4.37500 0.62500 199.49998 200.00000 7379.01568 

CS 1.12500 0.56250 55.78959 58.35895 6071.65500 

GWO 0.81250 0.43750 42.09784 176.64538 6059.81846 

MFO 1.00000 0.50000 51.58740 85.72137 6433.88664 

OBSCA 0.87500 0.62500 42.40156 200.00000 7745.28645 

RIME 0.81250 0.43750 42.09169 176.72436 6060.63089 
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3.5.2 Welded beam design problem 1 

The welded beam design problem (Li et al., 2020) is to ascertain the welded beam that has 2 

the least expensive cost, taking into account four limitations and the key characteristics of 3 

shear stress  , bending stress  , buckling load   , and deflection  . As depicted in Figure 25, 4 

this task encompasses the four variables: the thickness of the welding seam  , the length of 5 

the welding joint  , the width of the beam  , and the thickness of the beam  . The subsequent 6 

content presents the mathematical model for this problem. 7 

Consider: 8 

                          

Objective:  9 

                 
                       

Subject to: 10 

                 

                 

                 

             

               

                

               
                            

 

Variable ranges:  11 
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According to the data presented in Table 11, it is evident that MGO achieved superior 1 

outcomes in comparison to the other algorithms. 2 

 3 

Figure 25. Structure of welded beam design. 4 

 5 

Table 11. Comparison results of welded beam design problem. 6 

Algorit

hms 

Optimum variables Optimum 

cost         

MGO 
0.2

0572 

3.47

099 

9.0

3609 

0.2

0575 
1.72499 

BA 2.0 10.0 1.0 0.1 1.93349 
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0000 0000 1979 0000 

CS 
0.1

9916 

5.30

471 

7.1

0414 

0.3

4582 
1.72812 

GWO 
0.2

0571 

3.47

111 

9.0

3749 

0.2

0573 
1.72503 

MFO 
0.2

0178 

3.51

587 

9.2

8318 

0.2

0473 
1.75968 

OBSC

A 

0.2

2858 

3.46

404 

8.1

9220 

0.2

6376 
2.01542 

RIME 
0.2

0547 

3.47

370 

9.0

4552 

0.2

0575 
1.72658 

3.5.3 Three-bar truss design problem 1 

The three-bar truss design (Pathak & Srivastava, 2022) is a problem of engineering 2 

optimization, aiming to assess the optimal cross-sectional areas       and    in order to 3 

minimize the volume of the truss structure under static loading, while considering stress   4 

restrictions. Figure 26 illustrates the proportions of the three-bar truss construction. The 5 

subsequent content presents the mathematical model for this problem. 6 

Consider:  7 

                     

Objective:  8 
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Subject to:  9 

   
√      

√   
       

     

   
  

√   
       

     

   
 

   √   

     

 

Variable ranges:  10 

          

where 11 

       
         

         
 



 - 49 - 

As is evident from the data presented in Table 12, it is apparent that MGO exhibited the 1 

most favorable outcomes when compared to all other algorithms under consideration. 2 

 3 

Figure 26. Structure of three-bar truss design. 4 

 5 

Table 12. Comparison results of three-bar truss design. 6 

Algorithms 
Optimum variables 

Optimum cost 

    ⁄     

MGO 0.78870 0.40818 263.89586 

BA 0.14753 1.00000 263.96253 

CS 0.78858 0.40853 263.89605 

GWO 0.78903  0.40725  263.89599  

MFO 0.79005  0.40471  263.92972  

OBSCA 0.78928  0.40974  264.21740  

RIME 0.78867  0.40827  263.89586  

 7 

3.5.4 Speed reducer design problem 8 

A speed reducer is an integral component of the mechanical system's gear box and finds 9 

application in various other contexts (Hassan et al., 2005). Figure 27 depicts the structure of 10 

the speed reducer design. The design of the speed reducer poses a more formidable 11 

benchmark, taking into account parameters such as the face width  , the module of the teeth 12 
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 , the number of teeth on the pinion  , the length of the first shaft between the bearings   , 1 

the length of the second shaft between the bearings   , the diameter of the first shaft   , and 2 

the diameter of the second shaft   . The subsequent content presents the mathematical model 3 

for this problem. 4 

Consider:  5 

                                             

Objective:  6 
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Table 13 presents the empirical findings. Evidently, MGO attained minimal values for the 9 

majority of parameters, ultimately yielding optimal outcomes. 10 
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 1 

Figure 27. Structure of speed reducer design. 2 

 3 

 4 

Table 13. Comparison results of speed reducer design problem. 5 

Algorithms 
Optimum variables Optimum 

cost                   

MGO 
3

.500 

0

.700 

17

.000 

7

.300 

7

.715 

3

.350 

5

.287 
2994.477 

BA 
3

.600 

0

.700 

17

.000 

7

.300 

7

.300 

3

.605 

5

.380 
3028.489 

CS 
3

.500 

0

.700 

17

.000 

7

.300 

7

.720 

3

.350 

5

.287 
2994.962 

GWO 
3

.501 

0

.700 

17

.000 

7

.484 

7

.763 

3

.353 

5

.287 
2998.595 

MFO 
3

.502 

0

.700 

17

.000 

7

.370 

7

.751 

3

.351 

5

.293 
3001.108 
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OBSCA 
3

.600 

0

.700 

17

.000 

8

.300 

8

.300 

3

.615 

5

.353 
3172.114 

RIME 
3

.500 

0

.700 

17

.000 

7

.300 

7

.716 

3

.350 

5

.287 
2994.511 

4. Conclusions and future works 1 

In this study, a useful optimization algorithm was proposed, drawing inspiration from the 2 

growth phenomenon observed in moss to resolve intricate optimization problems. The MGO 3 

algorithm initially introduced the method of determination of wind direction to determine the 4 

direction of the wind, that is, the overall evolution direction of the population. Based on this, 5 

the method of spore dispersal search was proposed, which was inspired by the spore dispersal 6 

of moss, and it uses two different steps to change the current individual. Then, the dual 7 

propagation search, inspired by the sexual and vegetative moss reproduction, was proposed, 8 

including two individual updating strategies. Lastly, the cryptobiosis mechanism was 9 

proposed, which improves the greedy selection mechanism and prevents the algorithm from 10 

falling into local optima. In the experimental section, the qualitative analysis was initially 11 

established for MGO, showcasing the distribution of past searches, the individual trajectory, 12 

the population's fitness, and the convergence curve. This analysis demonstrated the effective 13 

global search capability of MGO but also revealed its relatively slow convergence. 14 

Subsequently, a benchmark test was conducted at CEC 2017, wherein a comparison was 15 

made between 10 original algorithms and 10 advanced algorithms. The final results were 16 

compared using Avg and Std, in addition to conducting WSRT and FT analyses on the results 17 

and presenting the convergence curves of the algorithms. These findings demonstrate that 18 

MGO exhibits highly promising performance and outperforms its competitors in the majority 19 

of benchmark functions. CEC 2022 benchmark tests were conducted, demonstrating that 20 

MGO's advantages extend beyond CEC 2017. This paper discusses the optimal parameters 21 

and suitable problem scales for MGO through parameter sensitivity analysis. The time spent 22 

analysis confirmed that the runtime of MGO falls within an acceptable range. Ultimately, the 23 

successful deployment of the MGO algorithm in engineering design problems underscores its 24 

proficiency in addressing sophisticated optimization challenges. Notably, the algorithm's 25 

performance is particularly commendable under conditions where the number of iterations is 26 

constrained, yet it consistently delivers robust solutions. This achievement can be attributed 27 
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to the adaptive ability inherent in MGO, which facilitates a self-regulating adjustment process 1 

that aligns seamlessly with the nuances of the problem at hand. The responsive nature of 2 

these mechanisms is instrumental in navigating the intricate dynamics of complex 3 

optimization scenarios, thereby reinforcing the algorithm's utility and relevance in 4 

engineering optimization. 5 

The previously mentioned experiments offer concrete evidence of the benefits of MGO. 6 

These achievements can be attributed to several key factors: 7 

1. The spore dispersal search strategy enables the majority of individuals to direct their 8 

search toward the optimal individuals, whereas the remaining individuals can engage 9 

in thorough exploration. 10 

2. Benefitting from the two steps of spore dispersal search, MGO algorithm tends 11 

towards a higher degree of exploration and a lower degree of exploitation in the 12 

initial phase, which gradually transforms into a lower degree of exploration and a 13 

higher degree of exploitation as the step length decreases. This approach effectively 14 

balances the exploration and exploitation aspects of each stage. 15 

3. Dual propagation search enhances the accuracy and efficiency of finding optimal 16 

solutions by selectively replicating and propagating components from the optimal 17 

solution. 18 

4. The cryptobiosis mechanism abandons the direct alteration of individuals for 19 

updating and instead updates current individuals based on recorded information. 20 

This approach is beneficial in preventing algorithms from falling into local optimal 21 

solutions. 22 

Although the MGO algorithm has shown outstanding performance in various tests and 23 

applications, it still has some limitations. One primary limitation is that MGO's convergence 24 

is slow, which may put it at a disadvantage when dealing with problems that require fewer 25 

iterations. Additionally, the algorithm may experience performance degradation when dealing 26 

with high-dimensional search spaces. Moreover, for specific optimization problems, such as 27 

those with multiple local optima, MGO may require further adjustments to improve its 28 

performance. Integrating MGO with specific mechanisms could potentially resolve the issues 29 

mentioned in the future. Additionally, it would be beneficial to focus on exploring binary and 30 

multi-objective variations of MGO, particularly in real-world problem-solving. Future studies 31 

may also enhance the MGO algorithm to manage high-dimensional problems effectively. In 32 

parallel, there is an opportunity for researchers to develop hybrid MGO algorithms that 33 
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incorporate other optimization strategies, aiming to improve their performance on particular 1 

cases. 2 
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A. Specific mean and variance statistics 32 

This section presents the average and variance of the optimal results obtained from 30 33 

independent experiments. The bolded text indicates the algorithms that attained the optimal 34 

mean or variance in the test functions. Table A1 shows the comparison results of MGO in 35 

CEC 2017 with original algorithms, Table A2 shows the comparison results of MGO in CEC 36 

2017 with advanced algorithms, Table A3 shows the comparison results of MGO in CEC 37 

2022 with other algorithms, and Table A4 shows the experimental results of MGO in CEC 38 

2017 for different dimensions. 39 
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Table A1. Results of MGO and original algorithms on CEC 2017. 1 

  F1   F3   F4  

  Avg Std  Avg Std  Avg Std 

MG

O 

 2.8990E+05 7.5260E+05  5.2823E+03 1.7689E+03  4.8922E+02 8.8258E+00 

SM

A 

 2.6600E+06 7.2249E+06  4.9535E+03 2.5939E+03  5.0137E+02 2.4575E+01 

RIM

E 

 8.0964E+03 6.8071E+03  3.0172E+02 7.3648E-01  4.8667E+02 2.3446E+01 

HH

O 

 1.1253E+07 2.6981E+06  7.9118E+03 2.8003E+03  5.2500E+02 2.1489E+01 

WO

A 

 2.3166E+06 1.5860E+06  1.7219E+05 6.1037E+04  5.4646E+02 4.2559E+01 

PSO  1.3961E+08 1.1263E+07  6.5478E+02 5.8008E+01  4.8691E+02 3.0062E+01 

SCA  1.2880E+10 1.6715E+09  3.6018E+04 6.6031E+03  1.4060E+03 2.1763E+02 

MF

O 

 1.2355E+10 7.3768E+09  1.1304E+05 7.8423E+04  1.2915E+03 7.8544E+02 

FA  1.4659E+10 1.5813E+09  5.8853E+04 9.9906E+03  1.3570E+03 1.5809E+02 

GW

O 

 1.5837E+09 1.0828E+09  3.5069E+04 1.2256E+04  5.8493E+02 7.9335E+01 

BA  5.2578E+05 2.9092E+05  3.0012E+02 1.1078E-01  4.7943E+02 2.4400E+01 

  F5   F6   F7  

  Avg Std  Avg Std  Avg Std 

MG

O 

 5.5322E+02 9.3729E+00  6.0000E+02 4.2859E-05  7.8392E+02 9.7234E+00 

SM

A 

 6.2329E+02 2.7058E+01  6.1544E+02 5.6769E+00  9.2865E+02 5.9732E+01 

RIM

E 

 5.8313E+02 2.4475E+01  6.0037E+02 2.5259E-01  8.1132E+02 2.2337E+01 

HH

O 

 7.3084E+02 3.1085E+01  6.6147E+02 6.0380E+00  1.2621E+03 6.7830E+01 

WO

A 

 7.9836E+02 5.9206E+01  6.7146E+02 8.4988E+00  1.2760E+03 1.0831E+02 

PSO  7.4564E+02 3.3985E+01  6.4889E+02 1.2030E+01  9.1821E+02 1.9607E+01 

SCA  7.7528E+02 1.5085E+01  6.4844E+02 4.4876E+00  1.1292E+03 3.0505E+01 

MF

O 

 7.2648E+02 5.5566E+01  6.4161E+02 1.0668E+01  1.1994E+03 2.1677E+02 

FA  7.6155E+02 1.1957E+01  6.4350E+02 2.3742E+00  1.3760E+03 4.6864E+01 

GW

O 

 5.9605E+02 2.1795E+01  6.0765E+02 2.8467E+00  8.6212E+02 4.4477E+01 

BA  8.3648E+02 7.1984E+01  6.7000E+02 1.0573E+01  1.6262E+03 2.2182E+02 

  F8   F9   F10  

  Avg Std  Avg Std  Avg Std 

MG

O 

 8.5340E+02 8.8935E+00  9.0464E+02 7.3657E+00  3.6460E+03 3.4879E+02 

SM

A 

 9.1685E+02 2.5619E+01  3.3039E+03 8.6718E+02  4.1082E+03 6.3715E+02 

RIM

E 

 8.8389E+02 1.7287E+01  1.3497E+03 4.5617E+02  3.6710E+03 6.5228E+02 

HH

O 

 9.5994E+02 2.8725E+01  6.7258E+03 7.1443E+02  5.6201E+03 7.7764E+02 

WO

A 

 1.0215E+03 5.6691E+01  7.0498E+03 1.8190E+03  6.2773E+03 9.2699E+02 

PSO  9.8613E+02 2.3285E+01  5.3125E+03 1.8324E+03  5.9884E+03 5.2418E+02 

SCA  1.0452E+03 1.8791E+01  5.2081E+03 9.5675E+02  8.1644E+03 3.1937E+02 

MF

O 

 1.0262E+03 4.8916E+01  7.5704E+03 2.3656E+03  5.4475E+03 8.3125E+02 

FA  1.0517E+03 1.2697E+01  5.4286E+03 4.4764E+02  7.9533E+03 3.2627E+02 

GW

O 

 8.9105E+02 1.5796E+01  1.8810E+03 5.2023E+02  3.9441E+03 4.0899E+02 

BA  1.0441E+03 4.0385E+01  1.4416E+04 5.6551E+03  5.7002E+03 7.0442E+02 

  F11   F12   F13  

  Avg Std  Avg Std  Avg Std 

MG

O 

 1.1791E+03 2.2601E+01  5.9778E+05 4.6525E+05  2.3541E+04 1.8362E+04 
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SM

A 

 1.2257E+03 2.8112E+01  3.1666E+06 2.2854E+06  4.3077E+04 2.8343E+04 

RIM

E 

 1.1880E+03 3.8611E+01  2.2466E+06 1.9825E+06  1.4218E+04 1.3208E+04 

HH

O 

 1.2400E+03 3.7815E+01  1.1232E+07 7.4248E+06  3.2443E+05 2.0001E+05 

WO

A 

 1.5260E+03 2.4129E+02  5.0574E+07 3.5734E+07  1.5149E+05 1.0280E+05 

PSO  1.2896E+03 4.5147E+01  2.6097E+07 1.1845E+07  4.5392E+06 1.0214E+06 

SCA  2.1166E+03 2.6616E+02  1.1842E+09 2.9578E+08  3.9758E+08 1.2891E+08 

MF

O 

 5.2127E+03 7.4794E+03  3.2619E+08 4.7086E+08  6.1105E+06 1.7942E+07 

FA  3.4558E+03 5.3914E+02  1.5424E+09 2.7408E+08  6.4351E+08 1.5545E+08 

GW

O 

 2.0315E+03 6.9291E+02  4.4746E+07 5.2929E+07  1.5896E+06 5.7885E+06 

BA  1.3113E+03 7.1005E+01  2.6687E+06 2.0698E+06  2.7702E+05 1.0153E+05 

  F14   F15   F16  

  Avg Std  Avg Std  Avg Std 

MG

O 

 7.8529E+03 4.3426E+03  1.0845E+04 6.4665E+03  2.1474E+03 1.5707E+02 

SM

A 

 4.8347E+04 3.1652E+04  2.1345E+04 1.3239E+04  2.5747E+03 2.7469E+02 

RIM

E 

 1.7271E+04 9.4420E+03  1.3100E+04 1.2306E+04  2.3420E+03 2.4336E+02 

HH

O 

 4.0496E+04 2.7321E+04  6.2499E+04 3.9194E+04  3.1945E+03 3.8470E+02 

WO

A 

 6.9560E+05 7.5884E+05  7.3718E+04 6.1664E+04  3.5920E+03 4.4798E+02 

PSO  1.1117E+04 7.1797E+03  4.5936E+05 1.7647E+05  2.8854E+03 2.1979E+02 

SCA  1.4935E+05 5.3731E+04  1.1466E+07 9.3152E+06  3.5622E+03 2.6880E+02 

MF

O 

 5.0650E+05 1.9155E+06  6.9322E+04 7.8189E+04  3.1383E+03 4.1902E+02 

FA  1.9779E+05 8.4694E+04  6.3280E+07 2.7958E+07  3.4383E+03 1.6047E+02 

GW

O 

 1.8713E+05 3.0241E+05  1.7696E+05 4.6491E+05  2.3693E+03 2.8952E+02 

BA  6.2210E+03 4.3864E+03  1.0923E+05 5.7837E+04  3.3992E+03 4.3953E+02 

  F17   F18   F19  

  Avg Std  Avg Std  Avg Std 

MG

O 

 1.8590E+03 4.5645E+01  2.1311E+05 1.0250E+05  7.4845E+03 6.0406E+03 

SM

A 

 2.2327E+03 2.0149E+02  3.7079E+05 2.8613E+05  1.5381E+04 1.9386E+04 

RIM

E 

 2.0297E+03 1.4133E+02  2.9547E+05 2.5060E+05  1.2911E+04 1.2343E+04 

HH

O 

 2.6559E+03 2.7858E+02  1.1273E+06 1.3388E+06  2.9592E+05 1.7420E+05 

WO

A 

 2.5756E+03 2.3442E+02  2.1831E+06 2.1590E+06  3.3446E+06 2.7047E+06 

PSO  2.4060E+03 2.5920E+02  2.5222E+05 1.9834E+05  1.2759E+06 6.6934E+05 

SCA  2.4155E+03 1.5535E+02  3.3299E+06 1.8080E+06  2.5407E+07 1.0597E+07 

MF

O 

 2.5554E+03 2.4468E+02  2.3546E+06 4.6962E+06  1.0574E+07 3.4948E+07 

FA  2.4928E+03 1.3178E+02  3.9747E+06 1.4000E+06  9.6433E+07 3.6296E+07 

GW

O 

 2.0111E+03 1.6523E+02  7.0065E+05 1.3102E+06  7.3938E+05 9.8454E+05 

BA  2.8331E+03 2.4093E+02  1.8476E+05 1.2947E+05  6.3662E+05 2.4511E+05 

  F20   F21   F22  

  Avg Std  Avg Std  Avg Std 

MG

O 

 2.1994E+03 7.7190E+01  2.3517E+03 2.0164E+01  2.7079E+03 1.0437E+03 

SM

A 

 2.4529E+03 1.5484E+02  2.3992E+03 2.2017E+01  5.1280E+03 1.4419E+03 

RIM

E 

 2.3357E+03 1.3383E+02  2.3885E+03 1.6829E+01  3.8968E+03 1.4652E+03 

HH

O 

 2.7569E+03 2.4584E+02  2.5397E+03 6.0469E+01  5.9307E+03 2.2888E+03 

WO

A 

 2.8070E+03 2.1071E+02  2.5762E+03 6.7688E+01  6.6701E+03 2.2481E+03 
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PSO  2.6233E+03 1.6346E+02  2.5315E+03 3.7721E+01  5.4086E+03 2.6065E+03 

SCA  2.5961E+03 1.0677E+02  2.5545E+03 2.0603E+01  8.6493E+03 2.0453E+03 

MF

O 

 2.6607E+03 2.1741E+02  2.5007E+03 5.2908E+01  6.3048E+03 1.6583E+03 

FA  2.5975E+03 1.0616E+02  2.5389E+03 1.3834E+01  3.8636E+03 1.2139E+02 

GW

O 

 2.3667E+03 1.2278E+02  2.3882E+03 2.4171E+01  4.3301E+03 1.7810E+03 

BA  2.9528E+03 2.1027E+02  2.6140E+03 5.9534E+01  7.1598E+03 6.0840E+02 

  F23   F24   F25  

  Avg Std  Avg Std  Avg Std 

MG

O 

 2.7091E+03 1.5257E+01  2.8748E+03 4.9898E+01  2.8871E+03 4.6854E-01 

SM

A 

 2.7717E+03 2.2816E+01  2.9611E+03 3.4644E+01  2.8992E+03 2.4279E+01 

RIM

E 

 2.7380E+03 2.2366E+01  2.9240E+03 3.2009E+01  2.8916E+03 1.2458E+01 

HH

O 

 3.1533E+03 1.2458E+02  3.3905E+03 1.5139E+02  2.9144E+03 2.0591E+01 

WO

A 

 3.0365E+03 7.8008E+01  3.1434E+03 8.9070E+01  2.9496E+03 3.7525E+01 

PSO  3.1054E+03 1.2348E+02  3.2216E+03 1.2736E+02  2.9108E+03 2.9827E+01 

SCA  2.9844E+03 3.1407E+01  3.1610E+03 2.3728E+01  3.1900E+03 5.8766E+01 

MF

O 

 2.8354E+03 3.7331E+01  2.9906E+03 3.2899E+01  3.2710E+03 4.0773E+02 

FA  2.9115E+03 1.5604E+01  3.0641E+03 1.3547E+01  3.5882E+03 1.0849E+02 

GW

O 

 2.7553E+03 3.1757E+01  2.9233E+03 5.0046E+01  2.9831E+03 3.5482E+01 

BA  3.3307E+03 1.5814E+02  3.3431E+03 1.1880E+02  2.9112E+03 2.3209E+01 

  F26   F27   F28  

  Avg Std  Avg Std  Avg Std 

MG

O 

 4.0186E+03 3.9639E+02  3.2083E+03 4.4499E+00  3.2194E+03 1.2742E+01 

SM

A 

 4.8778E+03 2.2243E+02  3.2255E+03 1.7849E+01  3.2407E+03 2.6577E+01 

RIM

E 

 4.4857E+03 5.8662E+02  3.2198E+03 1.1417E+01  3.2184E+03 2.1823E+01 

HH

O 

 6.7470E+03 1.3522E+03  3.3562E+03 1.0669E+02  3.2524E+03 2.2836E+01 

WO

A 

 7.8913E+03 8.7146E+02  3.3950E+03 1.0721E+02  3.3013E+03 4.1557E+01 

PSO  4.6470E+03 1.9225E+03  3.1653E+03 3.8830E+01  3.2432E+03 2.1243E+01 

SCA  7.0302E+03 3.0005E+02  3.3962E+03 3.7136E+01  3.7846E+03 1.0940E+02 

MF

O 

 5.7867E+03 5.1565E+02  3.2518E+03 3.5325E+01  4.3510E+03 8.6598E+02 

FA  6.5408E+03 1.7887E+02  3.3334E+03 1.7574E+01  3.9254E+03 9.5191E+01 

GW

O 

 4.6037E+03 4.8841E+02  3.2579E+03 3.2886E+01  3.3967E+03 8.0863E+01 

BA  8.9385E+03 2.4335E+03  3.4211E+03 1.2336E+02  3.1185E+03 4.3142E+01 

  F29   F30     

  Avg Std  Avg Std    

MG

O 

 3.5823E+03 9.2845E+01  4.7078E+04 3.9615E+04    

SM

A 

 3.8440E+03 2.0144E+02  2.6378E+04 1.3271E+04    

RIM

E 

 3.5922E+03 1.4086E+02  2.6142E+04 3.0790E+04    

HH

O 

 4.3275E+03 2.7912E+02  1.8603E+06 1.0920E+06    

WO

A 

 4.8366E+03 4.7333E+02  1.0888E+07 7.6156E+06    

PSO  4.3005E+03 2.8285E+02  3.2591E+06 1.4546E+06    

SCA  4.7235E+03 2.0852E+02  7.3614E+07 2.9620E+07    

MF

O 

 4.1477E+03 2.3358E+02  7.2809E+05 9.3522E+05    

FA  4.6628E+03 1.4080E+02  9.7760E+07 2.6026E+07    
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GW

O 

 3.7070E+03 1.5395E+02  7.4817E+06 6.4047E+06    

BA  4.9707E+03 3.7763E+02  1.4239E+06 8.4549E+05    

 1 
Table A2. Results of MGO and advanced algorithms on CEC 2017. 2 

  F1   F3   F4  

  Avg Std  Avg Std  Avg Std 

MGO  1.7106E+

05 

2.3484E+

05 

 5.8220E+

03 

2.1318E+

03 

 4.8913E+

02 

1.2907E+0

1 SCAD

E 

 1.9417E+

10 

3.1871E+

09 

 6.1225E+

04 

6.5015E+

03 

 3.6278E+

03 

8.4935E+0

2 IWO

A 

 2.4734E+

06 

2.5179E+

06 

 8.0673E+

04 

3.2523E+

04 

 5.3351E+

02 

3.1783E+0

1 RCBA  1.7118E+

04 

5.3907E+

03 

 3.0105E+

02 

3.2819E-

01 

 4.8524E+

02 

2.6184E+0

1 OBSC

A 

 1.7366E+

10 

2.5837E+

09 

 6.1086E+

04 

8.0911E+

03 

 2.6355E+

03 

7.1634E+0

2 ALCP

SO 

 6.4670E+

03 

6.6662E+

03 

 2.7024E+

04 

3.9714E+

03 

 5.0786E+

02 

4.7290E+0

1 CMA

ES 

 1.0000E+

02 

3.7320E-

15 

 3.0000E+

02 

2.5856E-

14 

 4.3540E+

02 

2.8864E+0

1 OBL

GWO 

 1.5145E+

07 

9.7533E+

06 

 1.9250E+

04 

5.1944E+

03 

 5.2136E+

02 

2.8758E+0

1 CGSC

O 

 1.4933E+

10 

2.6057E+

09 

 4.4082E+

04 

6.7183E+

03 

 1.7260E+

03 

3.3523E+0

2 RDW

OA 

 1.4824E+

07 

3.4433E+

07 

 2.2018E+

04 

8.2190E+

03 

 5.0879E+

02 

2.8029E+0

1 MSPS

O 

 1.1582E+

02 

6.6989E+

01 

 3.0000E+

02 

2.0475E-

06 

 4.0292E+

02 

1.7931E+0

0   F5   F6   F7  

  Avg Std  Avg Std  Avg Std 

MGO  5.5254E+

02 

9.4478E+

00 

 6.0000E+

02 

9.5452E-

05 

 7.8063E+

02 

1.0012E+0

1 SCAD

E 

 8.3004E+

02 

2.2864E+

01 

 6.5978E+

02 

7.2550E+

00 

 1.1783E+

03 

4.8469E+0

1 IWO

A 

 7.5893E+

02 

6.2020E+

01 

 6.5338E+

02 

1.1137E+

01 

 1.1748E+

03 

9.0955E+0

1 RCBA  8.0691E+

02 

4.7188E+

01 

 6.7141E+

02 

9.4720E+

00 

 1.9026E+

03 

2.7699E+0

2 OBSC

A 

 8.0925E+

02 

2.1952E+

01 

 6.5563E+

02 

5.3935E+

00 

 1.1829E+

03 

4.4224E+0

1 ALCP

SO 

 5.9544E+

02 

3.0970E+

01 

 6.0541E+

02 

5.4423E+

00 

 8.6266E+

02 

4.1973E+0

1 CMA

ES 

 1.2355E+

03 

1.9202E+

02 

 6.9026E+

02 

1.4946E+

01 

 4.1289E+

03 

1.0639E+0

3 OBL

GWO 

 6.6289E+

02 

3.8639E+

01 

 6.2134E+

02 

1.5021E+

01 

 9.2675E+

02 

6.5454E+0

1 CGSC

O 

 7.9926E+

02 

1.6250E+

01 

 6.5596E+

02 

5.8246E+

00 

 1.1351E+

03 

3.3663E+0

1 RDW

OA 

 6.8304E+

02 

4.9500E+

01 

 6.1645E+

02 

7.5291E+

00 

 9.9334E+

02 

6.5064E+0

1 MSPS

O 

 6.8576E+

02 

2.5954E+

01 

 6.4785E+

02 

4.5910E+

00 

 8.0370E+

02 

1.9144E+0

1   F8   F9   F10  

  Avg Std  Avg Std  Avg Std 

MGO  8.5129E+

02 

1.1576E+

01 

 9.0624E+

02 

8.8247E+

00 

 3.8488E+

03 

3.3485E+0

2 SCAD

E 

 1.0823E+

03 

1.5621E+

01 

 8.3868E+

03 

1.0794E+

03 

 8.1190E+

03 

3.4717E+0

2 IWO

A 

 9.9250E+

02 

4.1941E+

01 

 7.0181E+

03 

2.2231E+

03 

 5.5787E+

03 

6.1739E+0

2 RCBA  1.0727E+

03 

5.2326E+

01 

 8.7635E+

03 

2.7117E+

03 

 5.5534E+

03 

6.9607E+0

2 OBSC

A 

 1.0678E+

03 

2.2547E+

01 

 6.6972E+

03 

1.0979E+

03 

 7.2597E+

03 

4.4485E+0

2 ALCP

SO 

 9.0661E+

02 

2.8816E+

01 

 2.0219E+

03 

1.2873E+

03 

 4.3521E+

03 

4.3322E+0

2 CMA

ES 

 1.3643E+

03 

1.1764E+

02 

 1.4513E+

04 

3.3668E+

03 

 6.1856E+

03 

7.8108E+0

2 OBL

GWO 

 9.4610E+

02 

3.9623E+

01 

 3.4860E+

03 

1.7449E+

03 

 5.2240E+

03 

8.1048E+0

2 CGSC

O 

 1.0574E+

03 

1.6749E+

01 

 6.1580E+

03 

1.1106E+

03 

 8.1840E+

03 

2.4573E+

02 RDW

OA 

 9.8284E+

02 

3.9627E+

01 

 4.6471E+

03 

1.4273E+

03 

 4.7837E+

03 

7.3125E+0

2 MSPS

O 

 9.3200E+

02 

2.2729E+

01 

 3.6696E+

03 

9.2561E+

02 

 4.4140E+

03 

3.6122E+0

2 
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  F11   F12   F13  

  Avg Std  Avg Std  Avg Std 

MGO  1.1840E+

03 

2.6654E+

01 

 6.2205E+

05 

4.2170E+

05 

 2.4553E+

04 

1.4584E+0

4 SCAD

E 

 3.4226E+

03 

6.7446E+

02 

 1.9724E+

09 

4.9635E+

08 

 6.5829E+

08 

2.1154E+0

8 IWO

A 

 1.3522E+

03 

6.2408E+

01 

 1.0620E+

07 

7.9669E+

06 

 3.4165E+

04 

2.5889E+0

4 RCBA  1.3032E+

03 

6.0382E+

01 

 1.5159E+

06 

9.1061E+

05 

 1.1612E+

05 

6.6144E+0

4 OBSC

A 

 2.9398E+

03 

7.0487E+

02 

 2.0194E+

09 

4.3574E+

08 

 6.7670E+

08 

3.6109E+0

8 ALCP

SO 

 1.2597E+

03 

6.3084E+

01 

 3.6267E+

05 

4.9679E+

05 

 2.6006E+

04 

2.3099E+0

4 CMA

ES 

 1.3036E+

03 

7.1416E+

01 

 2.6841E+

03 

4.3861E+

02 

 2.9734E+

03 

5.9458E+

02 OBL

GWO 

 1.2879E+

03 

4.3212E+

01 

 1.6848E+

07 

1.2247E+

07 

 1.9625E+

05 

1.3831E+0

5 CGSC

O 

 2.1993E+

03 

2.3950E+

02 

 1.3847E+

09 

3.1748E+

08 

 4.7011E+

08 

1.8238E+0

8 RDW

OA 

 1.2338E+

03 

5.6172E+

01 

 3.3983E+

06 

2.0509E+

06 

 1.4870E+

04 

1.8596E+0

4 MSPS

O 

 1.1901E+

03 

2.3918E+

01 

 2.6445E+

03 

5.2133E+

02 

 2.8894E+

03 

8.5094E+0

2   F14   F15   F16  

  Avg Std  Avg Std  Avg Std 

MGO  7.9868E+

03 

4.5004E+

03 

 1.2338E+

04 

1.1276E+

04 

 2.1586E+

03 

1.1486E+0

2 SCAD

E 

 3.6470E+

05 

1.7976E+

05 

 9.4117E+

06 

5.9941E+

06 

 3.8844E+

03 

2.2834E+0

2 IWO

A 

 3.3656E+

05 

3.8458E+

05 

 1.7120E+

04 

1.0038E+

04 

 3.1255E+

03 

3.3766E+0

2 RCBA  8.0764E+

03 

3.9362E+

03 

 4.4948E+

04 

3.6158E+

04 

 3.2112E+

03 

5.6083E+0

2 OBSC

A 

 3.0309E+

05 

1.3298E+

05 

 1.1463E+

07 

1.3831E+

07 

 3.8111E+

03 

1.6560E+0

2 ALCP

SO 

 2.7653E+

04 

4.6398E+

04 

 1.2628E+

04 

1.1912E+

04 

 2.5147E+

03 

3.2234E+0

2 CMA

ES 

 1.6037E+

03 

6.5564E+

01 

 1.7724E+

03 

1.3295E+

02 

 2.1924E+

03 

3.6919E+0

2 OBL

GWO 

 5.0953E+

04 

4.4432E+

04 

 9.1594E+

04 

5.2043E+

04 

 2.8603E+

03 

4.2953E+0

2 CGSC

O 

 1.9065E+

05 

2.6040E+

05 

 1.1527E+

07 

1.2527E+

07 

 3.7155E+

03 

1.9115E+0

2 RDW

OA 

 1.5526E+

05 

1.4657E+

05 

 1.0946E+

04 

1.1754E+

04 

 2.7796E+

03 

3.6440E+0

2 MSPS

O 

 1.5730E+

03 

8.9908E+

01 

 1.8083E+

03 

9.2613E+

01 

 2.5940E+

03 

3.0857E+0

2   F17   F18   F19  

  Avg Std  Avg Std  Avg Std 

MGO  1.8365E+

03 

3.6755E+

01 

 1.7766E+

05 

8.2603E+

04 

 7.9786E+

03 

6.9311E+0

3 SCAD

E 

 2.5329E+

03 

1.6460E+

02 

 4.1177E+

06 

2.0420E+

06 

 3.1949E+

07 

2.4783E+0

7 IWO

A 

 2.4108E+

03 

2.2596E+

02 

 1.7904E+

06 

1.8699E+

06 

 1.7557E+

04 

2.4970E+0

4 RCBA  2.8553E+

03 

4.0410E+

02 

 1.8434E+

05 

1.1857E+

05 

 1.3084E+

04 

1.2208E+0

4 OBSC

A 

 2.5431E+

03 

1.8613E+

02 

 4.8958E+

06 

3.0485E+

06 

 4.2617E+

07 

2.0854E+0

7 ALCP

SO 

 2.1924E+

03 

1.8862E+

02 

 1.8028E+

05 

1.6394E+

05 

 1.5102E+

04 

1.5432E+0

4 CMA

ES 

 2.0204E+

03 

1.6853E+

02 

 2.0208E+

03 

8.8971E+

01 

 2.0966E+

03 

7.7248E+

01 OBL

GWO 

 2.2141E+

03 

2.0943E+

02 

 1.3006E+

06 

1.0039E+

06 

 4.2477E+

05 

3.2826E+0

5 CGSC

O 

 2.4817E+

03 

1.8232E+

02 

 3.0036E+

06 

1.7743E+

06 

 2.9465E+

07 

2.0634E+0

7 RDW

OA 

 2.1954E+

03 

2.6042E+

02 

 4.5943E+

05 

4.5788E+

05 

 1.3431E+

04 

1.3912E+0

4 MSPS

O 

 2.1381E+

03 

2.0656E+

02 

 2.0291E+

03 

5.1671E+

01 

 2.2049E+

03 

2.2528E+0

2   F20   F21   F22  

  Avg Std  Avg Std  Avg Std 

MGO  2.1878E+

03 

7.0304E+

01 

 2.3510E+

03 

1.7428E+

01 

 2.9754E+

03 

1.2421E+0

3 SCAD

E 

 2.7117E+

03 

8.5457E+

01 

 2.5791E+

03 

2.0282E+

01 

 4.5183E+

03 

3.9522E+0

2 
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IWO

A 

 2.6158E+

03 

1.7459E+

02 

 2.5511E+

03 

4.7953E+

01 

 6.0931E+

03 

2.2350E+0

3 RCBA  2.9697E+

03 

2.5984E+

02 

 2.6274E+

03 

7.4871E+

01 

 7.3786E+

03 

7.9617E+0

2 OBSC

A 

 2.6624E+

03 

1.2203E+

02 

 2.4670E+

03 

7.5167E+

01 

 4.1796E+

03 

3.6642E+0

2 ALCP

SO 

 2.3851E+

03 

1.7252E+

02 

 2.4153E+

03 

3.4920E+

01 

 4.4460E+

03 

1.8484E+0

3 CMA

ES 

 3.4017E+

03 

3.1232E+

02 

 2.5875E+

03 

2.7327E+

02 

 7.9974E+

03 

1.1730E+0

3 OBL

GWO 

 2.5275E+

03 

1.4114E+

02 

 2.4387E+

03 

3.8564E+

01 

 2.8061E+

03 

1.4884E+0

3 CGSC

O 

 2.6321E+

03 

1.1163E+

02 

 2.5692E+

03 

1.9707E+

01 

 3.8642E+

03 

2.3199E+0

2 RDW

OA 

 2.4626E+

03 

1.8438E+

02 

 2.4932E+

03 

4.7327E+

01 

 6.3308E+

03 

1.2743E+0

3 MSPS

O 

 2.4470E+

03 

1.0290E+

02 

 2.4352E+

03 

2.3817E+

01 

 3.0183E+

03 

1.6398E+0

3   F23   F24   F25  

  Avg Std  Avg Std  Avg Std 

MGO  2.7114E+

03 

1.5635E+

01 

 2.8817E+

03 

1.3158E+

01 

 2.8869E+

03 

8.8596E-

01 SCAD

E 

 3.0061E+

03 

3.2310E+

01 

 3.1704E+

03 

3.0100E+

01 

 3.4892E+

03 

9.2620E+0

1 IWO

A 

 2.9665E+

03 

8.5186E+

01 

 3.1658E+

03 

8.6104E+

01 

 2.9437E+

03 

3.3132E+0

1 RCBA  3.3875E+

03 

2.0852E+

02 

 3.4051E+

03 

1.8364E+

02 

 2.8968E+

03 

2.2118E+0

1 OBSC

A 

 3.0170E+

03 

2.8328E+

01 

 3.1888E+

03 

3.5749E+

01 

 3.3977E+

03 

1.2726E+0

2 ALCP

SO 

 2.7838E+

03 

4.7144E+

01 

 2.9730E+

03 

5.5778E+

01 

 2.8975E+

03 

2.1793E+0

1 CMA

ES 

 4.3759E+

03 

8.2095E+

02 

 2.8712E+

03 

4.6397E+

01 

 2.8880E+

03 

3.4573E+0

0 OBL

GWO 

 2.7981E+

03 

3.5862E+

01 

 2.9792E+

03 

4.0213E+

01 

 2.9114E+

03 

2.4559E+0

1 CGSC

O 

 2.9930E+

03 

3.1271E+

01 

 3.1468E+

03 

2.8012E+

01 

 3.3069E+

03 

1.0619E+0

2 RDW

OA 

 2.8551E+

03 

4.8003E+

01 

 3.1512E+

03 

1.1050E+

02 

 2.9072E+

03 

1.9920E+0

1 MSPS

O 

 2.9837E+

03 

1.2728E+

02 

 3.0753E+

03 

6.4987E+

01 

 2.8971E+

03 

2.2151E+0

1   F26   F27   F28  

  Avg Std  Avg Std  Avg Std 

MGO  3.9874E+

03 

3.4702E+

02 

 3.2087E+

03 

5.0094E+

00 

 3.2232E+

03 

1.0957E+0

1 SCAD

E 

 7.3969E+

03 

3.6436E+

02 

 3.4491E+

03 

5.4004E+

01 

 4.2213E+

03 

2.2396E+0

2 IWO

A 

 6.8634E+

03 

1.0195E+

03 

 3.3172E+

03 

5.9386E+

01 

 3.2914E+

03 

3.0958E+0

1 RCBA  9.0680E+

03 

2.1248E+

03 

 3.4816E+

03 

1.9404E+

02 

 3.1869E+

03 

5.6702E+0

1 OBSC

A 

 6.9704E+

03 

6.7402E+

02 

 3.4477E+

03 

5.7765E+

01 

 4.2068E+

03 

2.4474E+0

2 ALCP

SO 

 4.9239E+

03 

9.8615E+

02 

 3.2461E+

03 

2.2529E+

01 

 3.2493E+

03 

6.2133E+0

1 CMA

ES 

 3.6353E+

03 

4.9953E+

02 

 3.4131E+

03 

1.2248E+

03 

 3.1389E+

03 

5.7043E+0

1 OBL

GWO 

 5.1056E+

03 

9.8225E+

02 

 3.2390E+

03 

1.5859E+

01 

 3.2791E+

03 

3.6164E+0

1 CGSC

O 

 7.0292E+

03 

5.1319E+

02 

 3.3870E+

03 

3.6426E+

01 

 3.9596E+

03 

1.3021E+0

2 RDW

OA 

 5.8780E+

03 

1.1151E+

03 

 3.2510E+

03 

2.3054E+

01 

 3.2593E+

03 

2.3796E+0

1 MSPS

O 

 5.0340E+

03 

2.0972E+

03 

 3.2845E+

03 

8.1211E+

01 

 3.1227E+

03 

4.6891E+0

1   F29   F30     

  Avg Std  Avg Std    

MGO  3.5987E+

03 

6.4548E+

01 

 4.3473E+

04 

2.7873E+

04 

   

SCAD

E 

 5.1117E+

03 

2.2695E+

02 

 1.0761E+

08 

3.7638E+

07 

   

IWO

A 

 4.2311E+

03 

2.5591E+

02 

 6.4172E+

05 

4.8268E+

05 

   

RCBA  4.8766E+

03 

4.3385E+

02 

 2.2596E+

05 

1.5570E+

05 

   

OBSC

A 

 4.9029E+

03 

2.9509E+

02 

 1.1638E+

08 

4.2666E+

07 

   

ALCP

SO 

 3.8511E+

03 

2.3928E+

02 

 1.7376E+

04 

1.4165E+

04 
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CMA

ES 

 3.6850E+

03 

1.6374E+

02 

 5.1775E+

03 

1.5641E+

02 

   

OBL

GWO 

 3.9906E+

03 

2.3812E+

02 

 2.7935E+

06 

1.8521E+

06 

   

CGSC

O 

 4.7703E+

03 

2.3970E+

02 

 9.3986E+

07 

3.9529E+

07 

   

RDW

OA 

 3.9685E+

03 

1.9626E+

02 

 1.7563E+

04 

8.8609E+

03 

   

MSPS

O 

 4.0192E+

03 

2.3166E+

02 

 9.3043E+

03 

2.1261E+

03 

   

 1 

Table A3. Results of MGO and other algorithms in CEC 2022. 2 

  F1   F2   F3  

  Avg Std  Avg Std  Avg Std 

MGO  3.0409E+02 4.4871E+00  4.4126E+02 1.1594E+01  6.0000E+02 2.0260E-06 

MSPS

O 

 3.0000E+02 1.2779E-08  4.0013E+02 7.2785E-01  6.4214E+02 7.0299E+00 

ALCP

SO 

 4.3155E+03 1.2803E+03  4.5252E+02 2.0977E+01  6.0078E+02 2.3545E+00 

IWO

A 

 8.0300E+02 8.7723E+02  4.5379E+02 1.5768E+01  6.3932E+02 1.0564E+01 

SCAD

E 

 2.1520E+04 3.4086E+03  7.4399E+02 7.5190E+01  6.4049E+02 6.2945E+00 

OBL

GWO 

 4.2393E+02 5.7119E+01  4.5992E+02 1.2228E+01  6.0752E+02 8.4489E+00 

RIME  3.0001E+02 6.5296E-03  4.4596E+02 1.5745E+01  6.0005E+02 3.2205E-02 

GWO  8.1807E+03 4.2591E+03  4.9251E+02 3.4285E+01  6.0335E+02 2.7708E+00 

PSO  3.7426E+02 9.8310E+00  4.3555E+02 2.5972E+01  6.3588E+02 1.3622E+01 

WOA  1.2844E+03 9.4266E+02  4.7470E+02 2.5355E+01  6.5853E+02 1.6438E+01 

SCA  7.6912E+03 2.3573E+03  6.2372E+02 4.4716E+01  6.3397E+02 3.5708E+00 

  F4   F5   F6  

  Avg Std  Avg Std  Avg Std 

MGO  8.2993E+02 5.4490E+00  9.0147E+02 2.5665E+00  6.8151E+03 6.3215E+03 

MSPS

O 

 8.6812E+02 1.1632E+01  1.5476E+03 3.8340E+02  1.8838E+03 2.0336E+01 

ALCP

SO 

 8.6557E+02 2.0895E+01  1.0854E+03 2.0520E+02  7.8625E+03 6.0922E+03 

IWO

A 

 9.0831E+02 3.4011E+01  3.3347E+03 1.0575E+03  8.6898E+03 7.1792E+03 

SCAD

E 

 9.4714E+02 7.9987E+00  2.4125E+03 3.5709E+02  6.3191E+07 4.8142E+07 

OBL

GWO 

 8.7223E+02 2.0548E+01  1.2160E+03 5.0237E+02  2.3391E+04 2.4240E+04 

RIME  8.5028E+02 1.4302E+01  9.1125E+02 2.3709E+01  6.2694E+03 5.1695E+03 

GWO  8.4403E+02 1.6043E+01  1.1103E+03 1.7108E+02  6.1992E+05 2.3606E+06 

PSO  8.8722E+02 1.8943E+01  1.2533E+03 6.2697E+02  1.2071E+06 4.1383E+05 

WOA  9.1173E+02 3.2021E+01  3.3872E+03 1.0857E+03  6.1841E+03 5.2406E+03 

SCA  9.2635E+02 1.2623E+01  1.8462E+03 3.2488E+02  8.3620E+07 4.8565E+07 

  F7   F8   F9  

  Avg Std  Avg Std  Avg Std 

MGO  2.0255E+03 2.8847E+00  2.2242E+03 1.0627E+00  2.4808E+03 1.6628E-06 

MSPS

O 

 2.1189E+03 2.5761E+01  2.2407E+03 3.0445E+01  2.4653E+03 1.6885E-08 

ALCP

SO 

 2.0454E+03 1.7655E+01  2.2344E+03 3.0297E+01  2.4810E+03 3.4472E-01 

IWO

A 

 2.1481E+03 5.1469E+01  2.2324E+03 7.9181E+00  2.4829E+03 2.6678E+00 

SCAD

E 

 2.1482E+03 1.7844E+01  2.2452E+03 3.7106E+00  2.5676E+03 1.2066E+01 

OBL

GWO 

 2.0741E+03 2.5887E+01  2.2361E+03 9.0541E+00  2.4816E+03 5.8725E-01 

RIME  2.0469E+03 1.9244E+01  2.2273E+03 2.2889E+01  2.4808E+03 2.7294E-03 

GWO  2.0575E+03 2.1741E+01  2.2508E+03 4.8200E+01  2.5118E+03 2.3690E+01 

PSO  2.1461E+03 6.4055E+01  2.3156E+03 9.6011E+01  2.4658E+03 1.1281E-01 

WOA  2.1821E+03 5.4630E+01  2.2543E+03 2.9457E+01  2.4879E+03 1.3153E+01 
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SCA  2.1091E+03 1.4160E+01  2.2506E+03 6.2658E+00  2.5463E+03 2.1060E+01 

  F10   F11   F12  

  Avg Std  Avg Std  Avg Std 

MGO  2.5023E+03 2.9872E+01  2.9074E+03 2.2367E+02  2.9391E+03 3.0514E+00 

MSPS

O 

 3.1345E+03 6.4983E+02  2.9167E+03 7.4664E+01  3.0457E+03 1.2147E+02 

ALCP

SO 

 2.5862E+03 1.5277E+02  2.9539E+03 3.5022E+02  2.9964E+03 3.8734E+01 

IWO

A 

 3.0601E+03 4.3733E+02  2.9524E+03 1.4511E+02  2.9904E+03 3.2090E+01 

SCAD

E 

 2.5410E+03 1.0352E+01  5.0823E+03 3.3648E+02  3.0357E+03 2.3683E+01 

OBL

GWO 

 2.6975E+03 5.8935E+02  2.9673E+03 1.1385E+02  2.9636E+03 1.7580E+01 

RIME  2.5404E+03 8.0824E+01  2.9270E+03 7.8320E+01  2.9535E+03 1.7244E+01 

GWO  3.0998E+03 5.5432E+02  3.4457E+03 3.0612E+02  2.9690E+03 2.1602E+01 

PSO  3.9870E+03 1.1244E+03  3.0198E+03 1.0257E+02  2.9748E+03 1.4516E+02 

WOA  4.2271E+03 1.0552E+03  2.9281E+03 1.2083E+02  3.0226E+03 6.9497E+01 

SCA  2.5266E+03 4.2257E+01  4.2819E+03 4.0516E+02  3.0102E+03 1.5015E+01 

 1 
Table A4. Results of MGO in different dimensions. 2 

  F1   F3   F4  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 8.0293E+

04 

1.4444E+

05 

 3.0006E+

02 

2.1165E-

01 

 4.0132E+

02 

1.5237E+0

0 MG

O30 

 2.8990E+

05 

7.5260E+

05 

 5.2823E+

03 

1.7689E+

03 

 4.8922E+

02 

8.8258E+0

0 MG

O50 

 3.0911E+0

4 

7.6396E+

04 

 9.9102E+

04 

1.6916E+

04 

 5.5061E+

02 

4.0888E+0

1 MG

O100 

 2.3298E+

06 

6.6172E+

06 

 5.5373E+

05 

6.5337E+

04 

 6.9006E+

02 

4.8530E+0

1   F5   F6   F7  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 5.0395E+

02 

1.4923E+

00 

 6.0000E+

02 

8.1763E-

14 

 7.1457E+

02 

2.1587E+0

0 MG

O30 

 5.5322E+

02 

9.3729E+

00 

 6.0000E+

02 

4.2859E-

05 

 7.8392E+

02 

9.7234E+0

0 MG

O50 

 6.3600E+

02 

1.9806E+

01 

 6.0000E+

02 

3.8432E-

03 

 8.9143E+

02 

2.1092E+0

1 MG

O100 

 9.9518E+

02 

5.9381E+

01 

 6.0053E+

02 

2.0557E-

01 

 1.4496E+

03 

6.4696E+0

1   F8   F9   F10  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 8.0340E+

02 

1.1884E+0

0 

 9.0000E+

02 

1.9926E-

08 

 1.1064E+0

3 

9.8556E+

01 MG

O30 

 8.5340E+

02 

8.8935E+

00 

 9.0464E+

02 

7.3657E+

00 

 3.6460E+

03 

3.4879E+0

2 MG

O50 

 9.3350E+

02 

1.7090E+

01 

 1.1606E+

03 

1.4780E+

02 

 7.4079E+

03 

6.9213E+0

2 MG

O100 

 1.2841E+

03 

5.3764E+

01 

 7.0420E+

03 

2.0584E+

03 

 1.9080E+

04 

1.1016E+0

3   F11   F12   F13  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 1.1024E+0

3 

1.7335E+

00 

 1.1013E+0

4 

1.1564E+0

4 

 1.6329E+

03 

8.3729E+

02 MG

O30 

 1.1791E+

03 

2.2601E+

01 

 5.9778E+

05 

4.6525E+

05 

 2.3541E+

04 

1.8362E+0

4 MG

O50 

 1.2698E+

03 

3.2148E+

01 

 1.0361E+

07 

6.1540E+

06 

 3.5202E+

04 

5.2509E+0

4 MG

O100 

 6.2083E+

03 

1.4300E+

03 

 1.4222E+

08 

5.4492E+

07 

 7.9152E+

03 

6.7388E+0

3   F14   F15   F16  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 1.5015E+0

3 

3.4950E+

02 

 1.6849E+

03 

6.5678E+

02 

 1.6081E+0

3 

2.4466E+

01 MG

O30 

 7.8529E+

03 

4.3426E+

03 

 1.0845E+

04 

6.4665E+

03 

 2.1474E+

03 

1.5707E+0

2 
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MG

O50 

 1.0558E+

05 

6.5157E+

04 

 1.9092E+

04 

1.8891E+

04 

 2.9656E+

03 

1.5314E+0

2 MG

O100 

 3.0724E+

06 

1.0836E+

06 

 1.0571E+

04 

1.0190E+

04 

 5.7371E+

03 

3.2663E+0

2   F17   F18   F19  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 1.7045E+

03 

6.8997E+

00 

 2.2732E+

03 

5.8197E+

02 

 2.3327E+

03 

9.8557E+

02 MG

O30 

 1.8590E+

03 

4.5645E+

01 

 2.1311E+

05 

1.0250E+

05 

 7.4845E+

03 

6.0406E+0

3 MG

O50 

 2.5522E+

03 

1.4494E+

02 

 9.1593E+

05 

5.1616E+

05 

 2.4948E+

04 

1.8508E+0

4 MG

O100 

 4.5936E+

03 

2.1043E+

02 

 4.6283E+

06 

1.7586E+

06 

 9.6082E+

03 

1.4164E+0

4   F20   F21   F22  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 2.0028E+

03 

6.1891E+0

0 

 2.2184E+

03 

3.9683E+

01 

 2.2672E+

03 

3.7070E+

01 MG

O30 

 2.1994E+

03 

7.7190E+

01 

 2.3517E+

03 

2.0164E+

01 

 2.7079E+

03 

1.0437E+0

3 MG

O50 

 2.7372E+

03 

1.0794E+

02 

 2.4373E+

03 

2.4612E+

01 

 8.6260E+

03 

1.3513E+0

3 MG

O100 

 4.5837E+

03 

2.2528E+

02 

 2.8402E+

03 

5.3282E+

01 

 2.1554E+

04 

1.2922E+0

3   F23   F24   F25  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 2.6074E+

03 

1.7020E+

00 

 2.5717E+

03 

7.3513E+

01 

 2.8843E+

03 

4.3148E+0

1 MG

O30 

 2.7091E+

03 

1.5257E+

01 

 2.8748E+

03 

4.9898E+

01 

 2.8871E+

03 

4.6854E-

01 MG

O50 

 2.8833E+

03 

2.4126E+

01 

 3.0572E+

03 

2.6645E+

01 

 3.0383E+

03 

2.7504E+0

1 MG

O100 

 3.2232E+

03 

4.1746E+

01 

 3.8189E+

03 

4.8392E+

01 

 3.3884E+

03 

6.4698E+0

1   F26   F27   F28  

  Avg Std  Avg Std  Avg Std 

MG

O10 

 2.8365E+

03 

6.8842E+

01 

 3.0897E+

03 

1.0022E+

00 

 3.0999E+

03 

9.0511E+0

1 MG

O30 

 4.0186E+

03 

3.9639E+

02 

 3.2083E+

03 

4.4499E+

00 

 3.2194E+

03 

1.2742E+0

1 MG

O50 

 5.3556E+

03 

2.0673E+

02 

 3.3401E+

03 

3.3680E+

01 

 3.3295E+

03 

9.1699E+0

1 MG

O100 

 1.1144E+

04 

5.3440E+

02 

 3.6093E+

03 

4.7240E+

01 

 3.6971E+

03 

3.6459E+0

2   F29   F30     

  Avg Std  Avg Std    

MG

O10 

 3.1465E+

03 

9.5942E+

00 

 5.7907E+

03 

1.7869E+

03 

   

MG

O30 

 3.5823E+

03 

9.2845E+

01 

 4.7078E+

04 

3.9615E+

04 

   

MG

O50 

 4.0899E+

03 

1.8681E+

02 

 3.3320E+

06 

9.0660E+

05 

   

MG

O100 

 6.6377E+

03 

2.5582E+

02 

 2.9391E+

05 

2.0323E+

05 

   

 1 


